• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Facebook
  • Instagram
  • LinkedIn
  • TikTok
  • Twitter
  • YouTube
CDE Almería – Centro de Documentación Europea – Universidad de Almería

CDE Almería - Centro de Documentación Europea - Universidad de Almería

Centro de Documentación Europea de la Universidad de Almería

  • HOME
  • WHAT´S ON
    • EU BULLETINS
    • EU NEWS
    • Activities
    • EU Calls and Awards
    • Radio Program «Europe with You»
  • DOCUMENTATION
    • Bibliographic Collection
      • Almería EDC Digital Collection
      • UNIVERSITY OF ALMERIA LIBRARY
    • Documentation by topic
    • EU Media Collection
      • Web Space
      • MEDIATHEQUE REPOSITORY
  • Europe on the net
    • Institutions
    • EU Representation in Spain
    • European information network of Andalusia
    • EU official journal
  • ABOUT US
    • Presentation
    • People
    • Contact
  • English
  • Spanish

Machine learning unlocks ice core climate clues

Inicio » Noticias UE » Environmental Affairs » Machine learning unlocks ice core climate clues

6 de July de 2022

A new technique based on machine learning can help scientists to more efficiently analyse ice cores. This could unlock new clues about our climatic past.

Ice cores – long cylinders of ice drilled and extracted from polar ice sheets or alpine glaciers – provide pristine records of past climates. Layers of deposit create a succession of climate snapshots, which can be traced back as far as 800 000 years ago. “The Earth’s climate can be revealed by detecting impurities fixed inside the ice,” explains ICELEARNING project coordinator Carlo Barbante from Ca’ Foscari University of Venice in Italy. “Soluble chemical compounds, atmospheric gases and insoluble particles emitted from deserts, forests and volcanoes are transported by winds and buried in the ice.” Standard methodological techniques to identify and quantify these particles can be very time-consuming. Samples need to be prepared in the lab, and each particle analysis typically requires a different preparation. Experts from different fields often look at the same sample, to identify what is of interest to their specific field (for example pollen grains, or volcanic ash).

CO2 the culprit in southern hemisphere temperature drop millions of years ago

 

Analysing the past

The ICELEARNING project, which was undertaken with the support of the Marie Skłodowska-Curie Actions (MSCA) programme, sought to streamline this process of analysis. This was achieved by using a liquid flow microscopy instrument, called a FlowCam. Niccolò Maffezzoli, the MSCA fellow on the project, worked on the conceptual idea, translating it into a prototype. The FlowCam works by photographing all particles in an ice core sample, as it flows through the instrument. The key idea behind ICELEARNING was to then use deep neural networks / advanced machine learning to process, identify and classify differently impurities in an automated fashion. “Niccolò Maffezzoli came across the FlowCam instrument while visiting a laboratory at the University of Bergen,” explains Barbante. “Niccolò thought this could help ice core scientists to identify their respective particles at the same time, and build a framework that can bridge multiple fields.” The key to all this was developing a deep neural network capable of differentiating and classifying different types of particles, based on digital images. To do this, training data sets for each type of particle had to be collected. Tens of thousands of images were ‘fed’ to the network, to help it ‘learn’ how to distinguish between particle types. “We found that the network was able to classify particles with very high accuracy,” says Barbante. “We deployed it on samples from the Greenland Ice Core Project, GRIP, ice cores, which date from between 13 000 and 17 000 years ago.”

Accurate climate records

Barbante and his team made a number of discoveries. They were able to identify volcanic tephra particles from known volcanic eruptions, effectively demonstrating the potential of their technique for identifying past volcanic eruptions in ice core records. Furthermore, the presence of diatoms – single-celled algae organisms that live in the oceans – was identified in ice samples from the Peruvian Andes. Overall, ICELEARNING successfully demonstrated how this methodology could support laboratory analyses by cutting costs, time and effort. New lines of research of less studied particles – such as these diatoms – could also be opened up. “ICELEARNING was essentially a pilot study to demonstrate the feasibility of this idea,” adds Barbante. “Next steps include expanding our model to include other particles, and upscaling the size of samples used.” Barbante also hopes that the project can contribute towards the EU-funded Beyond EPICA Oldest Ice Core project, helping scientists to produce particle records beyond 1 million years ago. This could shed new light on numerous aspects of the Earth’s past climate.

European Commission — CORDIS

Publicaciones relacionadas:

cartel con la bola del mundoCJEU upholds the inadmissibility of the appeal against the climate package Commission welcomes provisional agreement on the European Climate Law EU4Environment: helping Eastern Partnership become greener Campo de fútbolThe huge impact of air pollution on football Independent national advisory bodies can reinforce the role of science in climate policy

“This is a space for debate. All comments, for or against publication, that are respectful and do not contain expressions that are discriminatory, defamatory or contrary to current legislation will be published”.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

Publicaciones relacionadas


cartel con la bola del mundoCJEU upholds the inadmissibility of the appeal against the climate package


Commission welcomes provisional agreement on the European Climate Law


EU4Environment: helping Eastern Partnership become greener


Campo de fútbolThe huge impact of air pollution on football


Independent national advisory bodies can reinforce the role of science in climate policy

Footer

Logotipo en negativo del Centro de Documentación Europea de Almería
  • CDE Almería
  • Edificio Parque Científico-Tecnológico (Pita)
  • Planta: 1ª, Despacho: 2904120.
  • Ctra. Sacramento s/n. Almería (Spain)
  • Teléfono: (+34) 950 015266

HOME
NEWS
DOCUMENTATION
EUROPE ON THE NET
ABOUT US

  • LEGAL NOTICE
  • PRIVACY POLICY
  • COOKIE POLICY
  • ACCESSIBILITY
  • SITEMAP

Copyright © 2023 CDE Almería · Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

<p>El Centro de Documentación Europea de la Universidad de Almería utiliza cookies propias y de terceros para facilitar al usuario la navegación en su página Web y el acceso a los distintos contenidos alojados en la misma. Asimismo, se utilizan cookies analíticas de terceros para medir la interacción de los usuarios con el sitio Web. Pinche el siguiente enlace si desea información sobre el uso de cookies y como deshabilitarlas. ajustes</p>

Politica de privacidad

El Centro de Documentación Europea de la Universidad de Almería utiliza cookies propias y de terceros para facilitar al usuario la navegación en su página Web y el acceso a los distintos contenidos alojados en la misma. Asimismo, se utilizan cookies analíticas de terceros para medir la interacción de los usuarios con el sitio Web. Pinche el siguiente enlace si desea información sobre el uso de cookies y como deshabilitarlas. <a href="/politica-de-cookies" rel="noopener" target="_blank">Más información</a>

Cookies estrictamente necesarias

Las cookies estrictamente necesarias tiene que activarse siempre para que podamos guardar tus preferencias de ajustes de cookies.

Básicamente la web no funcionara bien si no las activas.

Estas cookies son:

  • Comprobación de inicio de sesión.
  • Cookies de seguridad.
  • Aceptación/rechazo previo de cookies.

Si desactivas esta cookie no podremos guardar tus preferencias. Esto significa que cada vez que visites esta web tendrás que activar o desactivar las cookies de nuevo.

Cookies de terceros

Esta web utiliza Google Analytics, Google Tag Manager y Yandex Metrika para recopilar información anónima tal como el número de visitantes del sitio, o las páginas más populares.

Dejar estas cookies activas nos permite mejorar nuestra web.

¡Por favor, activa primero las cookies estrictamente necesarias para que podamos guardar tus preferencias!

Política de cookies

Pinche el siguiente enlace si desea información sobre el uso de cookies y como deshabilitarlas. Más información