ISSN 1831-9424

.

European
Commission

JRC Technical Report

On the parametrization
of velocity-based constraints
in EUROPLEXUS

Casadei, F., Markovic, D., Larcher M.

2023

nnnnnn

=

=

- n l\llm Lm ,\,\ ﬂ"”““"'“ ‘]‘" l

L
zzzzzzz

Research EUR 31504 EN
Centre

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It
aims to provide evidence-based scientific support to the European policymaking process. The contents of this publication do not
necessarily reflect the position or opinion of the European Commission. Neither the European Commission nor any person acting on
behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and
quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should
contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of
any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries.

Contact information

Name: Martin Larcher

Address: JRC Ispra

Email: martin.larcher®ec.europa.eu

EU Science Hub
https://joint-research-centre.ec.europa.eu

JRC133012

EUR 31504 EN

PDF ISBN 978-92-68-03227-5 ISSN 1831-9424 doi:10.2760/71283 KJ-NA-31-504-EN-N

Luxembourg: Publications Office of the European Union, 2023

© European Union, 2023

O)

The reuse policy of the European Commission documents is implemented by the Commission Decision 2011/833/EU of 12 December
2011 on the reuse of Commission documents (0J L 330, 14.12.2011, p. 39). Unless otherwise noted, the reuse of this document is
authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/).
This means that reuse is allowed provided appropriate credit is given and any changes are indicated.

For any use or reproduction of photos or other material that is not owned by the European Union permission must be sought directly from
the copyright holders.

How to cite this report: Casadei, F., Markovic, D., Larcher M., On the parametrization of velocity-based constraints in EUROPLEXUS,
Publications Office of the European Union, Luxembourg, 2023, doi:10.2760/71283, JRC133012.

On the parametrization of velocity-based constraints
in EUROPLEXUS

F. Casadei?, D. Markovic?, and M. Larcher?

L Active Senior
2 European Commission, Joint Research Centre
Directorate for Space, Security and Migration
Safety and Security of Buildings Unit

April 18, 2023

Contents

1 Introduction

2 Constrained fast transient dynamics
2.1 Governing equation Lo e

2.2 Time integration Lo
2.3 Treatment of constraints by Lagrange multipliers

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9

Velocity constraints at full step oL
Velocity constraints at mid-stepo L oo
Algorithm behavior at the initial time
Acceleration constraints
Displacement constraints L Lo Lo
Constraints transformation before system solution
Parametrization of the velocity constraints
Theoretical background for the parametrization of velocity constraints
Summary of the obtained expressions 0.

Implementation notes

3.1 New syntax of the LIAJ option ittt
3.2 The LIAT directive o o i i e e e

3.3

3.4

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Include COPT.INC e
Subroutine RAZOPT
Subroutine OPTION e
Subroutine IMPOPT
Subroutine FLIAIS e
Subroutine FLIAVD

The LINK COUP directive o v e i e e e e e e e e e s e

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Subroutine SOLVE_SINGLE_LIAISON
Subroutine SOLVE_SINGLE_DVA
Subroutine SOLVE_TWO_LIAISONS
Subroutine SOLVE_GROUP
Subroutine COMPUTE_CGAMMA

The LINK DECO DEPL|VITE|ACCE directive.

3.4.1

Subroutine SOLVE_AVD DECO

Numerical examples

4.1 Barimpact tests e e e e e e e

4.2

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.12

Case PINBO3 e
Case PINLO3 e
Case PINB13 e
Case PINL13 e
Case PINB23 e
Case PINL23 e
Case PINB33 e
Case PINL33 e
Case PINB43 e
Case PINBB3 e
Case PINB63 e
Cases PINB73, PINB83, PINB93

Simplified crash tests

4.2.1
4.2.2

Case CBEAOL
Case CBEAQ2

ii

NeINIEN SN NI IO} TSN w

N = =
_ N = O

23
23
23
24
24
24
24
25
26
27
29
30
31
33
34
35
36

References

Appendix I — Input files

List of input files

List of Tables

1
2
3

Summary of analytical expressions.o
Bar impact tests. e e e
Simplified crash tests.

List of Figures

© 00 g O Ut s W N

—_
o

Code flowchart for the LIAT directive.
Code flowchart for the LINK COUP directive.
Code flowchart for the LINK DECO DEPL|VITE|ACCE directive.
Results of test PINBO3.
Results of test PINLO3.
Influence of the a parameter.
Deformed geometry in test CBEAOL.
Deformed geometry in test CBEAO1 (without mesh lines).
Comparison of results of tests CBEAOL and CBEA02.
Further comparison of results of tests CBEAO1 and CBEA02.

iii

47

48

60

Foreword

This report is part of a large series of scientific-technical documents that are meant to provide es-
sential information and documentation to users and developers of the EUROPLEXUS code. EURO-
PLEXUS (also abbreviated as EPX) is a computer code jointly developed by the French Commissariat
a 'Energie Atomique (CEA DMT Saclay) and by EC-Joint Research Centre (JRC Ispra) within the
framework of contractual agreements between the two research bodies.

EPX is a mature, general-purpose Finite Element and Finite Volume explicit code under active
development since 1999, for the simulation of fast transient dynamic events in complex fluid-structure
systems. It is an evolution of its ancestor PLEXIS-3C, which was also jointly developed by CEA and
JRC in the 1980s and early ’90s.

The code has been traditionally used in safety studies, ranging from nuclear reactors, to energy
plants, to chemical and industrial plants, off-shore structures, car and road barrier crashes, among
others. More recently it has proven a very useful tool in providing certified and independent numerical
solutions in support of EC policies regarding the security of critical infrastructures and public spaces
(like buildings, train and metro stations and carriages, etc.), which may be vulnerable to terrorist
attacks or to natural disasters.

While being mainly of technical nature, the information contained in this series of reports is
an invaluable source of reference for the users (as a complement to the User’s manual) but also
in particular for the developers of EPX. New models made available in the code are described in
detail from the theoretical viewpoint. Several verification and application examples are also usually
provided, in order to illustrate the practical use and to verify the correct functioning of the models.

Usually, at the end of each report an Appendix lists the input files that were used to produce the
examples presented in the report. This allows users to re-run the test cases with EPX at any time
and to use them as a basis for their own numerical simulations.

A complete list of the reports (produced both at JRC and at CEA) in this series can be found in
the Bibliography section of the EPX User’s manual [1].

Abstract

This report presents some notes on the treatment of constraints by Lagrange Multipliers in EURO-
PLEXUS [1] (also abbreviated as EPX), a computer code jointly developed by the French Commis-
sariat & I’Energie Atomique (CEA DMT Saclay) and by EC-JRC. The code application domain is the
numerical simulation of fast transient phenomena such as explosions, crashes and impacts in complex
three-dimensional fluid-structure systems.

Recently, EPX is being used to simulate vehicle crash against obstacles such as road barriers for
safety and security studies. These studies involve the treatment of complex contact-impact scenarios,
which in EPX are typically modelled by the method of Lagrange Multipliers (LM), although other
methods (e.g. penalty-based) are also available in the code.

Recent investigations concerning (elastic) impact tests have shown that the LM-based mid-step
velocity constraints strategy (the default one in EPX) leads to smooth solutions (few oscillations),
but some energy is lost at the moment of the impact, namely each time some previously free nodes
get into contact, so that the total energy of the system is not exactly conserved.

On the contrary, the full-step velocity constraints strategy produces a lot of oscillations (if the
material is elastic) but it conserves much better the energy of the system.

Therefore, it has been proposed to implement a parametrization of the velocity constraints, allow-
ing to choose an intermediate value of the time at which the constraints are imposed. The goal is
to reduce the spurious energy dissipation observed with the mid-step strategy, but hopefully without
triggering the large oscillations produced by the full-step strategy.

Keywords: Constraints, Lagrange Multipliers, Contact-Impact.

1 Introduction

This report presents some notes on the treatment of constraints by Lagrange Multipliers in EURO-
PLEXUS.

EUROPLEXUS [1] (also abbreviated as EPX) is a computer code jointly developed by the French
Commissariat a I’Energie Atomique (CEA DMT Saclay) and by EC-JRC. The code application domain
is the numerical simulation of fast transient phenomena such as explosions, crashes and impacts in
complex three-dimensional fluid-structure systems. The Cast3m [2] software from CEA is used as a
pre-processor to EPX when it is necessary to generate complex meshes.

Recently, EPX is being used to simulate vehicle crash against obstacles such as road barriers for
safety and security studies. The code has proven a very useful tool in providing certified and indepen-
dent numerical solutions in support of EC policies regarding the security of critical infrastructures and
public spaces (like buildings, train and metro stations and carriages, etc.), which may be vulnerable to
terrorist attacks or to natural disasters. In this framework, the capabilities of EPX to treat complex
contact-impact scenarios in fast transient dynamics are being continuously tested and verified against
available experimental data and other computer codes.

The presented work has been conducted in order to improve the performance of the EPX software
for the simulation of vehicle crashes. Such simulations are needed for the assessment of security
barriers used for the protection of public spaces against hostile vehicle ramming loads. The JRC
is also providing generic vehicle models, publicly shared under the EU Public Licence, to foster
standardisation in the field of protective barriers [3,4].

Recent investigations concerning (elastic) impact tests have shown that the LM-based mid-step
velocity constraints strategy (the default one in EPX) leads to smooth solutions (few oscillations),
but some energy is lost at the moment of the impact, namely each time some previously free nodes
get into contact, so that the total energy of the system is not exactly conserved.

Essential boundary conditions (constraints) can be imposed in EPX by a variety of methods.
The most important and traditionally more often used of these methods in EPX is the method of
Lagrange Multipliers (LM). The method leads to an exact solution of constraints under the form of a
linear system of algebraic equations. This introduces an implicit part in the otherwise fully explicit
architecture of the code. However, the implicit part involves only a (usually small) subset of the
model’s degrees of freedom (dofs), and therefore it typically does not penalize too much the efficiency
of the numerical solution.

An advantage of the LM method over other methods also available in EPX, such as the penalty
method, is that all constraints are satisfied simultaneously and a unique solution is obtained, which
does not depend upon any heuristic parameters (which are typical, e.g., of penalty-based methods).

On the contrary, the full-step velocity constraints strategy produces a lot of oscillations (if the
material is elastic) but it conserves much better the energy of the system.

Therefore, it has been proposed to implement a parametrization of the velocity constraints, allow-
ing to choose an intermediate value of the time at which the constraints are imposed. The goal is
that of reducing the spurious energy dissipation observed with the mid-step strategy but hopefully
without triggering the large oscillations produced by the full-step strategy.

The report is organized as follows:

e Section 2 starts by briefly presenting the governing equations of transient dynamics, the time
integration scheme and the LM method to impose constraints. Then, the theoretical back-
ground behind the parametrization of velocity-based constraints is introduced. Finally, the new
proposed parametrization of the velocity-based constraints is presented in detail.

e Section 3 contains some implementation notes showing how the new optional parametrization
has been programmed in the code.

e Finally, Section 4 contains a series of numerical examples which test and verify the new optional
parametrization. All the input files used for the numerical examples are listed in the Appendix.

2 Constrained fast transient dynamics

To solve the governing equations of transient dynamics under some constraints, use is made of the
standard method available in EUROPLEXUS, i.e. the method of Lagrange multipliers (see e.g. [5,6]).
We start by briefly recalling the governing equations that are at the base of the transient explicit
formulation adopted in EUROPLEXUS. Then the time integration scheme is introduced. Finally, the
Lagrange multipliers method is outlined.

2.1 Governing equation

For the structural domain, the governing equation is the conservation of momentum. By expressing
equilibrium in the current configuration and by introducing a spatial discretization based on Finite
Elements, the following set of discrete differential equations in time can be obtained:

Mii = Foy — Fiy (1)

where M is the mass matrix, u are the nodal displacements, Fey; the external forces and Fi,; the
internal forces. The nodal accelerations 4 are readily obtained from (1) since the mass matrix is
lumped.

2.2 Time integration

Time integration of (1) is achieved via a central difference (CD) scheme, which is usually written as:

. . At . ..
un+1 — an + 7 (un + un-l—l)

2
u"th = u" 4 At <u” + A;u"> 2
where u is the vector of nodal displacements, @ the nodal velocities, % the accelerations, the upper
suffix n denotes a quantity at time t” and n+1 denotes a quantity at time t"*! = t" 4+ At, At being the
time interval used in the discretization process. The integration scheme (2) for the structural domain
is implemented as follows in EUROPLEXUS. Assume that a complete solution, i.e. all discretized
quantities, are known at time ¢". First, an intermediate (half-step) velocity is introduced:

n o 1 At M
2= (3)

which is denoted v in order to stress the difference with 4. This is the constant velocity that would
transform configuration n into configuration n+1 over a time interval At in the discretization process.
From the second of egs. (3), the new displacements are given by:

urtl = + Atv"+1/2 (4)
On this new configuration, the internal forces Flﬁ:r 1 can now be evaluated by application of the

constitutive relations. Then, the new accelerations ™! can be directly computed via the discretized

equilibrium equations (1) and finally the new velocities are obtained from the first of egs. (2).

It is important to note that in the time integration process the new configuration, induced by the
displacements u™*!, is obtained first (at the initial time, the configuration is known by definition),
then equilibrium is applied on the current configuration, while the velocities %" *! corresponding to
this new configuration are computed only at the end of the time stepping procedure. Note that this
time integration scheme is explicit in that all quantities in the right-hand side terms are known when
the equations are applied, thus no system solver is needed.

2.3 Treatment of constraints by Lagrange multipliers

The method of Lagrange multipliers (LM) is traditionally the main method used in EPX to impose
constraints (also called essential boundary conditions), although in recent years also alternative meth-
ods based on penalty formulations have been implemented in the code. The main advantages of the
LM method are its generality (it combines any type of constraint) and the absence of ad-hoc param-
eters in the solution. The main drawback is the necessity to solve a linear system, which may be
computationally less efficient than the other methods.

The method was first introduced in reference [5] in the framework of the LIAI directive of EPX.
More recently, it was re-programmed with a modern and flexible data structure based on the Fortran
90 language in the form of the LINK COUP directive, see [6]. Finally, it has been generalized to the case
of asynchronous constraints, which may occur in models using different time steps not only in time
by also in space (spatial partitioning) in the presence of contacts or other non-permanent constraints.
A complete description of the resulting method is given in Section 3 of reference [7]. In the following
explanation of the method, for simplicity we consider only the case of synchronous constraints [6],
since this suffices to discuss the developments (velocity parametrization) introduced in the present
work.

Thus, following references [5,6], suppose that a configuration n+ 1 at "' has been reached. The
velocity and acceleration corresponding to this configuration are not known yet. The internal forces
and the externally applied loads (natural boundary conditions), on the other hand, are known, since
they depend only on the current configuration and on time.

Consider the subset of degrees of freedom for which essential boundary conditions (i.e. constraints)
are imposed. The equilibrium equations for this subset can be written, in analogy with eq. (1):

m gt = fenJrl _ fin+1 + pntl (5)

where m is the mass matrix, a the vector of accelerations, f. and f; the externally applied loads
and internal force vectors, and r indicates the vector of unknown reaction forces produced by the
constraints. Note that similar, but distinct, symbols have been used here with respect to eq. (1) to
stress the fact that these equations involve only a (usually small) subset of the degrees of freedom of

eq. (1).

2.3.1 Velocity constraints at full step

Let us now assume that the imposed essential boundary conditions be expressed by a linear set of
constraints on the (full-step) velocities, of the following form, i.e ., considering the bilateral case
(equality constraints) for simplicity:

Cn—i—lvn—i-l — bn+1 (6)

where C' is a matrix of known coefficients that may either be constant or variable in time, v is the vector
of constrained velocity degrees of freedom, and the right-hand-side b is a known vector. The cases of
constraints imposed on accelerations or on displacements rather than on velocities can be treated in
a similar way and will be detailed in the following Sections. For simplicity, all quantities expressed at
time ¢"*!, corresponding to the current configuration, are indicated without the superscript n + 1 in
the following discussion.

In order to introduce the constraint (6) into the equilibrium equation (5), use is made of Lagrange
multipliers. Without loss of generality, the unknown reactions can be expressed as:

r=CT\ (7)
where A is the vector of Lagrange multipliers. Substituting into (5) yields:
ma = fo— fi+ C"A (8)
Multiplying both members by Cm ™! gives:
Ca=Cm™ ' (f.— f)+Cm'CT (9)

and the Lagrange multipliers can be symbolically obtained from:
Cm'CTA=Ca-Cm™ (f. - f) (10)

In order to actually obtain A, the term Ca has to be determined. To this end, the constraint (6)
can be used together with the time integration scheme. The central difference integration scheme for
the velocity, see egs. (2) and (3), can be written as:

n+l _ vn+l/2 + gan-i-l (11)

v 2

where, as usual, superscript n+ 1/2 is used to indicate the (known) value at the middle of the current
step At, that spans from the previous configuration n to the current configuration n + 1.
Substituting (11) into (6) yields:

At 2
Co" /2 ¢ 7Ca =b and hence Ca = AL (b - Cv”+l/2> (12)
In conclusion, the second of expressions (12) substituted into (10) allows to find the Lagrange multi-
pliers A, from which the reactions are finally obtained with expression (7).
The method outlined above is implemented as follows. Let us pose:

B*=Cm'cT §-= A% (b - Cv"+1/2) W=8-Cm ' (f—f) (13)

Eq. (10), using (12)-(13), becomes:
B'A=W (14)

where B* is a matrix, called the matriz of connections, and W a vector. Both B* and W are known,
as appears from the definition (13).

The code computes both B* and W at each step, since the coefficients usually vary with time, due
e.g. to large geometrical distortions, in all but the most trivial cases (such as, for example, clamped
edges). Thus, the problem reduces to the solution of the linear system of equations (14) in order to
find the Lagrange multipliers, symbolically:

A=(B)'wW (15)

Any standard method for the solution of linear algebraic systems can be used for this purpose. It may
be useful to note, to this end, that B* is a square, symmetric matrix. This results from the definition
of B*, the first of egs. (13), and from the fact that m is a square, non-singular, symmetric matrix,
hence m ™! is also symmetric.

This completes the description of the Lagrange multipliers method in the form that was imple-
mented in PLEXIS-3C, an ancestor of EUROPLEXUS, see [5,6,8]. By default, EUROPLEXUS uses
a slightly different algorithm, which is described in the next Section. The PLEXIS-3C algorithm,
where the velocity-based constraints are imposed on the full-step values by eq. (6), can still be used
also in EUROPLEXUS by activating the OPTI LIAJ input option. However, before the present work
the option was implemented only for the old LIAT model of constraints, and had no effect on the more
modern LINK model, which is now used almost exclusively for new applications.

2.3.2 Velocity constraints at mid-step

An alternative approach to the one detailed in the previous Section consists in expressing the constraint
on the new mid-step velocity v"3/2 rather than on the new full-step velocity @' (or v"*1). In other
words, in place of eq. (6) for the constraints, one can use:

Cn+3/2,vn+3/2 _ bn+3/2 (16)

This expression seems preferable to (6) because the mid-step velocity v, defined by eq. (3), and
not the full-step velocity w, is the fundamental quantity for the time marching algorithm. Note,

however, that although C and b have different indexes in (16) with respect to (6), they are in reality
the same quantities. In fact, for practical reasons they are computed based upon known quantities
on the current configuration n + 1. Therefore, the actually used constraint reads:

‘ O Hlynt3/2 _ pntl ‘ (17)

By using (17) instead of (6), egs. (7) to (10) remain unchanged, but instead of eq. (11) we need
now an expression for v"+3/2, given by:

P2 — /2 A" +2At”+1an+1 (18)
Here we indicate by At" the time step that has lead to the current configuration (previously denoted
by At), i.e. A" = t"F! — " while At"T! is the next time step: A"t = "2 — "+l Note,
incidentally, that the size of the next time step At"t! is already known when reaction forces are
computed on the current configuration, because it is estimated during the loop over elements used
to compute the internal forces, see [5,6]. By substituting (18) into (17) we get, in place of egs. (12)
and (13):

At + AL 2
n+1/2 T2 Ca= Ca=—"___ _(b—cCov"t/?
Cv + 5 a=2>b and hence a NN TES <b v)

2
A+ Al

(19)
B*=cm~'c” S

(b _ Cv"+1/2) W=8-Cm™(fo— f)

As shown in [9,10] for a simple academic 1D bar impact test case, this second algorithm based
upon eq. (17) gives much smoother numerical results than eq. (6) in the presence of pinball (PINB)
contact conditions, and is therefore preferable to the other approach. For the other (permanent)
boundary condition types, the two methods appear substantially equivalent. For this reason, the
second algorithm (17)-(19), where velocity-based constraints are imposed on the mid-step rather than
on the full-step velocity, is now used by default in EUROPLEXUS for all types of constraints.

The first algorithm, where the velocity-based constraints are imposed on the full-step values by
eq. (6), is still usable in EUROPLEXUS and can be activated by the OPTI LIAJ input option. However,
before the present work that option was implemented only for the old LIAT model of constraints,
and had no effect on the more modern LINK model which is now used almost exclusively for new
applications.

2.3.3 Algorithm behavior at the initial time

Yet another reason for preferring the expression (17) involving mid-step velocities rather than ex-
pression (6) is related to the behavior of the algorithm at start-up, i.e. at the initial time t" of the
computation, corresponding to step 0.

Suppose that a constraint on velocities is imposed already at tV. Since initial velocities are inde-
pendently prescribed by the user in the input file, there are two possibilities: () either these velocities
satisfy the constraint or (ii) they do not satisfy the constraint. A problem may therefore arise with
the first method because it tries to enforce a constraint on velocity values at t, which are already set
and may not be altered. Thus in case (ii) it may simply be impossible to satisfy the constraint at .

The second method, however, is sounder because the velocities at t91/2 are not set in the input
file and may therefore be constrained. In fact, the EUROPLEXUS implementation is such that, when
the first method (OPTI LIAJ) is chosen, a special treatment is performed at step 0 which consists in
using the second method (only for this initial step), in order to avoid the above mentioned difficulty.
In other words, it is like if the OPTI LIAJ option would be active only starting from step 1.

Note that at the initial time t of a computation (step 0, corresponding to n = —1) eqs. (17-18)
should be replaced by:

C'/? = b’ (20)
AtY
v/2 =0 + Tao (21)

where v° is the initial, known velocity imposed by the user and At = t' — 9 Then instead of
egs. (19) one gets:

o . A0 2 0
Cv” + TCa =b and hence Ca= A0 (b —Cv)

(22)
B'=Cm™'CT S=5(b-00) W=8§-Cm™(fo-f)

2.3.4 Acceleration constraints

We consider also the case in which constraints are expressed on the accelerations rather than on the
velocities. In other words, in place of (17) we would have:

Cc"tlgntt = pntt or simply Ca=b (23)

This formulation is worth being introduced because in some special cases the constraints seem
to be more naturally imposed on the accelerations rather than on the velocities. An example is a
constraint of constant distance (DIST) between points, see [6]. Lagrange multipliers may be introduced
in exactly the same manner as before and egs. (7) to (10) continue to hold without any modifications.
However, in place of egs. (18-19) we may in this case replace directly the (known) expression (23) of
Ca, i.e. the right-hand side term b, into (10), which becomes:

Cm'CT'A=b-Cm ™' (f. - f) (24)

Therefore, in place of the second of egs. (19) we get in this case the simpler expressions:

B =Ccm'cT S=b W=S8-Cm ' (f.—f) (25)

The solution of the system (14) or (15) proceeds exactly as above, and so does the calculation of
the reactions (7).

2.3.5 Displacement constraints

Finally, let us consider also the case of constraints imposed on the displacements, i.e. of the form:
Cd=b» (26)

However, note that in this case the current displacements d = d"*! (current configuration) are already
known at the moment of imposing the constraints and may not be altered. Therefore, we can only
write displacement constraints on the next step, i.e. at time n + 2 in the formalism adopted so far:

Cn+1dn+2 — bn+1 (27)

Note also that, in analogy with the comments to eq. (17) in Section 2.3.2, the coefficients appearing
in both C and b may only be computed (explicitly) on the current configuration and therefore we use
a superscript n + 1 for these quantities in eq. (27).

Lagrange multipliers may be introduced in exactly the same manner as before and egs. (7) to (10)
continue to hold without any modifications. In order to actually obtain A from (10), the term Ca
has to be determined. To this end, the constraint (27) can be used together with the time integration
scheme.

The central difference integration scheme for the displacement and the velocity, see egs. (2) and (3),
can be written as:

dn+2 — d+ Atn+1,vn+3/2
A" 4 Al (28)
—Qa

"B/ — /2 -

where At" and At"*! have the same meaning as before (see definitions in Section 2.3.2). Substitut-
ing (28) into (27) yields:

n n+1
cd'?=C (d + At”+1v”+3/2) =C [d + A (v”+1/2 LA A +2At a>] =b (29)

and hence:
2

Ca= At L (A + Agnt)

(b —Ccd-— At"+1cv"+1/2) (30)

9

Therefore, in place of the second of egs. (19) we get in this case the expressions:

B*=CcmC?
2
S i (A 1 AP (b Cd—- At"""'Cv) (31)

W:S_Cm_l(fe_fi)

The solution of the system (14) or (15) proceeds exactly as above, and so does the calculation of
reactions (7).

2.3.6 Constraints transformation before system solution

In Section 2.3.2 it has been pointed out that the standard way of imposing links in EUROPLEXUS
is to write constraints on the velocities. This is indeed the case in the majority of link types that
are available in the system. However, there are cases where it may appear more “natural” to write
conditions on the accelerations. This has been outlined in Section 2.3.4, and a practical example of
such a constraint is the case of imposed constant distance (DIST) between two nodes, see [6].

When several (non-independent) links are imposed together, forming a set (linear system) of links,
it is obviously essential that all of them be expressed in the same type of quantities, i.e. either all on
velocities or all on accelerations.

The strategy adopted in EUROPLEXUS within the implementation of the LIAT and LINK COUP
directives is as follows. Each constraint is written in the more “natural” form, i.e. either on velocities
or on accelerations, depending upon the specific type. Then the system of links is assembled but,
immediately prior to solution, any velocity-related constraints are transformed into the equivalent
acceleration-related form. Those constraints which are already in the form of accelerations are just
skipped.

The transformation procedure is implemented in subroutine SMVCAL (called from FLIAIS for
the relevant types of constraints) for the LIAT model, while for the LINK COUP model it is implemented
in subroutine SMVCALCUL (see Section 3).

To perform the transformation of velocity-based into equivalent acceleration-based constraints we
observe the expressions of the term Ca (i.e. of the acceleration-based constraint) in the various cases:

e For an acceleration-based constraint one has, trivially, eq. (23):

Ca=b (32)

i.e. the original constraint, so that no transformation is needed.
e For a constraint based on mid-step velocity, eq. (17):

Cv" 32 = p (33)
one has the second of egs. (19):
_ 2 . n+1/2
Ca= St (b - Cv™'7?) (34)

The expression (34) can be viewed as the equivalent of (33) expressed on the accelerations rather
than on the velocities. In other words, the velocity-based constraint (33) can be replaced, without
any effect on results, by the acceleration-based constraint (34).

Therefore, in order to implement the transformation of a velocity-based constraint in the code, it
is sufficient to “correct” (replace) the right-hand side computed “on the velocities” (b) as follows:

2
b xpy g (b Co) (35)
In the implementation of the new LINK directive presented in Section 4 of [6], the strategy described
in Section 3 of the same reference for the old LIAI directive has been maintained, as concerns the
solution of a set of coupled links. In the case of a single independent link, however, a direct solution is
performed, therefore each type of constraint (either on the velocities or on the accelerations) is solved
without any transformation, as described in detail in Sections 4.10 and 4.10.1 of reference [6].

10

2.3.7 Parametrization of the velocity constraints

Before the present development, EUROPLEXUS offered two possibilities to impose velocity-based
constraints:

o Mid-step constraints, where the conditions are imposed on the new mid-step velocity " t3/2)
i.e. at time t"t1 4 A%'H. This is the default procedure in EUROPLEXUS and is described in
Section 2.3.2.

e Full-step constraints, where the conditions are imposed on the new (current) full-step velocity
v" 1 ie. at time t"*!. In EUROPLEXUS this procedure is activated by the OPTI LIAJ input
command, but prior to the present work it only had effect on the old LIATI constraint model, and
not on the LINK COUP constraint model. It is described in Section 2.3.1. This was the default
procedure in PLEXIS-3C, one of the ancestors of EUROPLEXUS.

The motivations for choosing the mid-step velocity constraints as a default in EUROPLEXUS

were given in [6,9,10] and can be summarized as follows:

e The mid-step velocity is the fundamental quantity in the central difference time integration
scheme. In EUROPLEXUS the full-step velocity is only computed for post-processing (and to
evaluate the kinetic energy used in the energy balance check) and does not appear directly in
the time stepping scheme.

e The start-up of the time stepping procedure may be inconsistent (depending on the initial
velocities chosen by the user) with the full-step velocity procedure, as detailed in Section 2.3.3.
Therefore the mid-step procedure is used at step 0 even when the full-step procedure is chosen
(EUROPLEXUS with OPTI LIAJ or PLEXIS-3C).

e Simple test cases involving elastic impacts with the pinball contact model (PINB) using LIAI
in EUROPLEXUS showed large oscillations (intermittent contact) with the full-step procedure,
while the results with the mid-step procedure were very smooth (continuous contact).

Recent investigations concerning (elastic) impact tests have shown that the mid-step velocity
constraints strategy leads to smooth solutions (few oscillations), but some energy is lost at the moment
of the impact, namely each time some previously free nodes get into contact, so that the total energy
of the system is not exactly conserved.

On the contrary, the full-step velocity constraints strategy produces a lot of oscillations (if the
material is elastic) but it conserves much better the energy of the system.

Therefore, it has been proposed to implement a parametrization of the velocity constraints, allow-
ing to choose an intermediate value of the time at which the constraints are imposed. The goal is that
of reducing the spurious energy dissipation observed in contact-impact applications with the mid-step
strategy but hopefully without triggering the large oscillations produced by the full-step strategy.
The theoretical background for the parametrization of contact constraints based on the velocities was
inspired by reference [11] and will be presented in Section 2.3.8 below.

The parametrization may be formulated as follows. We introduce a scalar parameter «, with
0 < a <1, and impose the velocity-based constraints at time:

Athrl

ta:tn+1
+ « 5

0<a<l) (36)

Thus, o = 0 produces full-step velocity constraints, & = 1 produces mid-step velocity constraints
and intermediate values of o produce velocity constrains at intermediate times between these two

extremes:
to=0 = ¢ntl full step

_ At (37)
o=t = ¢t 4 —5 mid step

Instead of using eqs. (6) or (17) the velocity constraint is written as:

‘Cn+1vn+1+a/2 _ ! (38)

11

where in place of (11) or (18) the velocity at the parametrized time is given by:

pHIe/2 _ ntl/2 | A" + oA a"+l (39)
2
By substituting (39) into (38) we get, in place of egs. (12-13) or (19):

A" + aAtH! 2
n+1/2 n+1/2
Cv"t1/2 4 fCa =b and hence Ca = N YN] (b — Cv" Y/)

2

B*=Cm™'Cc" S=__-—"
" NN

(b _ CU”H/Z) W=8-Cm™(f— f)

2.3.8 Theoretical background for the parametrization of velocity constraints

We now briefly present the theoretical background behind the proposed parametrization of velocity-
based constraints and the expected effects of the parameter on energy conservation in contact-impact
applications.

EPX considers a contact condition as a kinematic constraint applied when a penetration (which
is a non-physical condition) is detected. In the contact treatment strategy used in EPX, through the
kinematic constraint the penetration value is maintained constant between two successive discrete
time instants "1 and ¢t"*2. In other words, when detected, the penetration is considered a priori as
acceptably small and does not need to be reduced, because the critical time step Aty is in general
very small (of the order of 1076 s).

Since in the CD time scheme of EPX (cfr. Section 2.2) the displacement d"*? at time t"*2 is
completely determined by the mid-step velocity v"13/2, the kinematic condition corresponding to
maintaining the relative displacement (i.e. the penetration) constant can be expressed as:

Cv"? =0 (41)

where C'is the link matrix corresponding to the kinematic constraints related to the contact conditions.

However, the inconvenience of representing a contact condition with such a kinematic constraint
is that it leads to a spurious energy dissipation. This algorithmic energy loss can be very high in some
situations. For instance, in case of an impact between rigid bodies, this approach is equivalent to an
inelastic shock, where the bodies remain glued together after the impact, without any rebound, and
where possibly all the initial energy could be dissipated (e.g. for two rigid bodies with the same mass
and opposite velocities or for a body impacting a fixed rigid obstacle). In many practical cases the
energy dissipation is quite low, but in some situations it could be non-negligible.

The article by Fetecau et al. [11], from which this Section is inspired, presents a rigorous variational
framework to model collisions between rigid, i.e. non-deformable, bodies of arbitrary shape. In that
work the contact conditions are not represented by the Lagrange multiplier method as they are in
EPX, but are deduced instead from the Lagrangian mechanics formalism involving the “principle of
minimum action”. In that approach, impacts between bodies are considered instantaneous, as they are
non-deformable, and the energy conservation is imposed explicitly, since this condition follows directly
from the variational principle together with the standard Euler-Lagrange equations for multi-body
dynamics.

Since impacts must also respect the non-penetrability conditions, in addition to energy conserva-
tion, it is assumed that a kinematic constraint similar to the one in eq. (41) is applied. However, this
alternative form of the constraint is not imposed on the displacement at the end of the next time step
t"*+2 but at some intermediate time between the instants t"T1 and ¢t"T2. The alternative form of the
constraint is then:

Cvn+1+a/2 -0 (42)

where a new parameter « is introduced. It is important to note that only when o = 1, is the condition
in eq. (42) identical to the condition in eq. (41). As it will be shown next, the new parameter o can
be chosen such that the total energy is conserved, i.e. so that the sum of the internal and kinetic
energies is the same before and after the contact.

12

To this end, it is convenient to express the difference in the kinetic energy between two successive
mid-step instants t"T1/2 and t"3/2 as follows:

_1 n+3/2 T -1 n+3/2_1 n+1/2 T —1pn+1/2
AE_2(I‘) MT 2(r) MIT (43)

where M is the mass matrix, assumed here to be symmetric so that M7 = M (actually, in EPX
the mass matrix is not only symmetric but typically diagonal, or lumped, as is customary in explicit
codes), and T2 and T"+3/2 are the values of momentum at the two different time instants:

rn+l/2 — M’Un+1/2
I\n+3/2 — M,UTL+3/2 (44)

To check that the expression (43) actually represents the kinetic energy, we expand the first term
by using the definition (44) of the momentum obtaining:

% (I"”?’/Q)TM“I‘"”/Q _ (MU”JFS/Q)TM”MU”*?’/Q

1
2
é (v"+3/ 2)T MT M~ Moy +3/2 (45)
% (vn+3/2>TMvn+3/2 m

where in the second passage we have used the fact that M is symmetric.
By introducing the momentum difference as:

AF — Fn+3/2 o FTL+1/2 (46)
the expression in eq. (43) becomes:
nt1/2\ T p 1 1 T ar—1
AE = (r) M~'AT + 2 (AD)" M~'AT (47)

To show that (47) is equivalent to (43) we proceed as follows. Replacing the definition of AT
eq. (46) into (47) gives:

AE — (Fn+1/2)TM—1Fn+3/2 _ (Im+1/2>TM—1I\n+1/2 i
1 (Fn+3/2 _ Fn+l/2)T ML (I\n+3/2 _ Fn+l/2)
2
(Fn+3/2)T ML (Im+3/2 _ 1—m+1/2) _ % (I‘”*l/Q)TM*l (Fn+3/2 _ Im+1/2) i
I\n+1/2>TM—11-\n+3/2 _ (Fn+1/2)T AMLpntl/2
(Fn+3/2>T M-lpn+3/2 _ % (Fn+3/2)T M-lpntl/2 (48)
(Fn+1/2)TM71Fn+3/2 4 % (Fn+1/2)TM711-m+1/2 4
I\n+1/2)TM—1Fn+3/2 _ (Fn+1/2)T ALt/
<Fn+3/2>T MoIpnts2 % (Fn+3/2>T M2
% <1-m+1/2>TM—11-\n+3/2 _ % <Fn+1/2)TM—1Fn+1/2

The last expression (48) of AE coincides with (43) if the second and third terms cancel out, i.e.
provided:

(I\n+3/2>TM—1I\n+1/2 2 (I\n+1/2)TM—1I\n+3/2 (49)

13

Now, we know that, if A, B, C are three matrices with compatible dimensions for multiplication,
their product and triple product satisfy:

(AB)T = BT AT (ABC)" = cT"BT AT (50)

So, by taking the transpose of the first member of (49) we get:

|:(]_-m+3/2>TM11-\n+1/2} ! _ <Fn+1/2>T (Mfl)TrnJrg/z
_ (Im+1/2>T JS—r (51)

where the last passage has exploited the fact that, since M is symmetric, its inverse M~ is also
symmetric, and the transpose of a symmetric matrix is the matrix itself, i.e. (M_l)T =M1

Eq. (51) tells us that the right hand side of (49) is the transpose of its left hand side, so the
equality in (49) would not hold in general. However, in the present particular case we know that each
side of (49) represents a scalar s, because the I' are one-dimensional [n x 1] (i.e. column) vectors.
Then, since the transpose of a scalar is the scalar itself (s = s), we can conclude that the equality
in (49) does indeed hold, and therefore eq. (47) is equivalent to (43).H

Thus, in general, if a@ and ¢ are [n x 1] (i.e., column) vectors and B is a symmetric [n X n] matrix,
so that BT = B, then their triple product is a scalar s:

a’Bc=s (52)

and:

c'Ba = aTBc‘ B symmetric matrix; a,c column vectors (53)

In fact, by taking the transpose of both members in eq. (52) we get:
(aTBc)T =: (54)

which, by using the expression of the triple product in (50), the above mentioned property BT = B,
the identity s” = s and the eq. (52), becomes:

c'BT (aT)T =c'Ba=s"=s=a"Bc (55)
thus proving (53).H

The identity (53) will be used in some of the subsequent developments. Moreover, the momentum
change must be equal to the impulse of the total force f:

AT = At f (56)
which, replaced into (47), leads to the following expression of the change in kinetic energy:
AFE = (rn+1/2)T M™IAT + % (AT)Y M~'AT

— At (r"+1/2>T M~'f+ %AthTMflf

= At (MU"+1/2>T M™'f+ %AtQ ffMm—1f (57)

— At (,Un+1/2)T MTM'f + %AthTM—lf

— At (v"+1/2)T f+ %AthTM’lf
where the definition (44) of I" has been used in the second passage, the first of (50) in the third passage

while the last passage has exploited the fact that M is symmetric, so that M M1 = MM~ =1,
where I is the identity matrix.

14

In this context, the total forces have three components: external, internal and contact interaction
forces:

f:fe_fi+fc:.ffree+fc (58)

The external forces are due to the applied loading conditions (e.g. gravity), the internal forces
are due to stresses caused by the deformation, and the contact interaction forces are here the main
unknowns. Namely, they need to be determined such that the condition in eq. (42) is satisfied when
contact is detected. In (58) it has been set:

.ffree:.fe_.fi (59)

to simplify the subsequent derivations. These are the “free” forces, i.e. the forces in the absence of
contact. It is important to stress that all types of forces are considered at the (current) time ¢"*1, so
the index n + 1 can be omitted.

In addition to the expression for the kinetic energy change eq. (57), the work of forces between two
consecutive (mid-step) discrete instants t"+1/2 and #"+3/2 = ¢"+1/2 L At in the CD time integration
scheme can be expressed as:

AW = At (") F = At (0" Freo (60)

The last passage is justified by the fact that to each contact force there corresponds an equal and
opposite reaction, so that the net work performed by such forces vanishes.

It is easily verified that AE and AW computed in this way (egs. 57 and 60, respectively) are
always equal in the absence of contact (f. = 0), i.e. AFEpe = AW, which confirms the energy
consistency of the CD integration scheme used in EPX. In fact, from the last expression of (57) we
obtain:

T 1 _
AE1free = At <’Un+1/2> ffree + iAthfcfeeM 1.ffree

T
= At |:’Un+1/2 + %At (Mil)T ffree:| .ffree

T
1 _
'Un—H/2 + iAtM 1ffree> JStree (61)

where the second passage has exploited the property (M *1)T = M~ already noted above for the
diagonal mass matrix M, the third passage has used the equilibrium equation a®™' = M~ f and
the fourth passage has used the CD time integration scheme detailed in Section 2.2.

In order to conserve the total energy also in the presence of contact (f. # 0) in the current
context of the central difference scheme, the kinetic energy change (including the contribution of
contact forces) must be equal to the work of the forces, thus ensuring the conservation of the total
energy:

AE - AW =0 (62)

The above conservation equation will lead, after expansion of the terms, to an equation containing
the velocity discretization parameter «. Then, a suitable choice of « will allow to satisfy the equation
and thus to conserve the total energy.

15

From the last of (57), by using the decomposition (58) of the total force, we obtain for AE:

T

AE = At (MH/? f+ %AtQ fIM—'f

)
L

T 1
= At (Un+l/2 .ffree + At (Un+1/2> fc + iAtQ (ffree + fc)T M_l (ffree + fc)
T T
— At (,Un+1/2> Fivee + At (,Un+1/2> fot)
1 1 1 1
§At2f§eeM_1ffree + iAtQ.chM_lfc + iAthf’{eeM_lfc + 5At2ng_1ffree
T T
— At (Un+1/2) Fivee + Al (,vn+1/2> fot
1 1
SO freeM ™ firee + S AP FIM ™ fo + AP FIM ™ frrce
where the identity (53) has been used in the last passage. Furthermore, from (60) we obtain:
AW = At (’U”+1)T Sree
1 T
— At (v”+1/ 24 QAt a"+1> Firee
1 T
= At (U”+1/2 + iAt M_1f> Stree
nt1j2 , L -1 1 AN (64)
=At|v + §AtM Stree + §AtM Je Stree

T 1 _ T 1 _ T
t vn+1/2) .ffree + 5At2 (M 1ffree) ffree + iAtQ (M lfc) ffree

ar
= A (0 2) S+ AR T (M) e+ SAPFT (M) free
A (0 2) fe + AP TR M i+ AP TM e

where in the expression for AW the following CD scheme relation and the equilibrium equation:

1
"t — Un+1/2 + At a"!
2 (65)
an+1 — M—lf

have been used in the first two passages, eq. (58) in the third passage, the first of (50) in the fifth
passage and the property (M _1)T = M~ in the last passage.

Therefore, the total variation of the energy becomes, by using again (53) for the last term:
AE — A A n+1/2 T 1 2T Ag—1 1 2 pT -1
— AW = At (v"2) fo CARFTMT e+ AR M, (66)

Beside (preferably) ensuring the conservation of the energy, the contact forces f. must primar-
ily respect the impenetrability condition, expressed via the velocity constraint in eq. (42) which is
parametrized in terms of a. However, it is more practical for further developments to introduce a new
temporary parameter 5:

f=5(at1) (67)

so that when « goes from 0 to 1, correspondingly 8 goes from 1/2 to 1. This transforms the
parametrized constraint (42) into:

Cvn+1+a/2 _ Cvn+1/2+6 -0 (68)

16

By expressing the parametrized velocity via the acceleration a”*! and the equilibrium equation
(second of 65):

,vn+1/2+5 _ vn+1/2 + BAt a"t!
_ Un+1/2 + BAt M—lf (69)

the constraint (68) becomes:
c (v”+1/2 +BALM! f) =0 (70)

We now apply the method of Lagrange Multipliers to solve the equilibrium equation under the
constraint (70), by closely following the procedure detailed in Section 2.3.1. Since the constraint
parametrization can be applied to any velocity-based constraint (i.e., not only to contacts), in place
of (70) we consider a more general version of the parametrized constraint, where the RHS is a known
vector b, not necessarily O:

C (v"“/? + BAt M‘1f> —b (71)

The unknown reactions r are expressed via the unknown Lagrange Multipliers A, cfr. eq. (7):
r=CT (72)
By letting the reactions appear explicitly, the equilibrium equation becomes:
Ma = faee + 7 = frree + CTA (73)
Multiplying both members by CM~! and simplifying:
Ca=CM ' fre +CM'CTX (74)

From this the Lagrange Multipliers are symbolically obtained as:

CM1CTA\=Ca—- CM ! f (75)
which, by letting:
B=cM'c? (76)
becomes:
B\ =Ca—- CM ! fye. (77)

In order to actually find A, the term Ca must be explicited. To this end, we use the time
integration scheme and the constraint. The parametrized velocity is (see the first of 69):

,Un+1/2+6 — ,Un+1/2 + BAt at! (78)

which, replaced in the form (68) of the constraint (with b at the RHS), gives:

Co™t/* P = Co"tV/2 L BAtCa = b (79)

and from this we obtain: .

_ — (ant1/2

Ca G (b Cv) (80)

By replacing (80) into (77) we obtain then:

1
_ Y (y ant1/2) -1

BA=oy (b Cv) CM freo (81)

and from this we explicit A by multiplying both members by B!

1

A:m

B! (b _ Cv”“/?) — B'CM ™ free (82)

17

By replacing (82) into the expression of the reactions (72) we get:

1
r = CTA = mC'TB_1 (b — C’Un+1/2> - CTB_ICM_lffree (83)
By particularizing (83) for the case of contact, i.e. by posing b =0 and r = f., we obtain finally:
fe=~ ﬁlAtCTBlcu”“/2 —C"B'CM ™ firee (84)

Now, it is convenient to introduce a new matrix H and the vector agee wWhich corresponds to the
acceleration if there were no contact forces:

H=C'"B™'C
4 (85)
Afree = M ffree
in order to express f. from (84) as follows:
1
fo=——cHv""/? - Hageo (86)

BAL

We note, incidentally, that the matrices B and H are symmetric, and this important property
will be used in the following.

To prove that B is symmetric (i.e. that BT = B), we take the transpose of both members in its
definition, eq. (76):

B" = (c")" (M) c”

. -N\T ~T

=cM™) C (87)
=CcM~'c”T

- BN

where in the second passage we have exploited the property (proven shortly below) that, since M is
symmetric (M7 = M), then M~ is also symmetric (M) = M~1).

Similarly, to prove that H is symmetric (i.e. that H? = H), we take the transpose of both
members in its definition, the first of egs. (85):

HT =" (B (")

-c" (B cC (88)
=Cc'B 'C
—HN®

where in the second passage we have exploited the fact that, since (87) tells us that B is symmetric,
then its inverse B~! is also symmetric, i.e. (B*I)T = B!, as demonstrated hereafter.

Let us now prove the property, used above, that the inverse of a (non-singular) symmetric matrix
A is also symmetric. In other words, we assume that A7 = A and that A~! exists. Then we want
to prove that (A~1)T = A~!. By definition of inverse:

AA T =A"1A=T (89)
where I is the identity matrix, which is symmetric:
=17 (90)
From the last two relations it descends that:
AAT = (aa)T
(a7 AT (91)
—(ahH)'a

where in the first passage we have used the formula of the transpose of a product (50) and in the
second one the symmetry of A. But, because of (89) we may also write:

Ala=AAa=(a) A (92)
Next, we right-multiply both sides of (92) by A~!, obtaining:
AlaAa = (AT A (93)

which is equivalent to:

Al=(a)' = (94)

We now introduce the following scalars h,,, hg, and hyq:
12\ 1/2 T 12\ 7
hv = <'Un+ /) an+ / ha = afreeHafree hva = ('Un+ /) Hafree (95)

and use them to obtain equivalent expressions of the three terms appearing in the formula of the
energy jump AE — AW, eq. (66).
The first term is, by using the expression (86) of f.:

() g () e ()
1

= _@hv - hva

The second term, by using the expression (86) of f., becomes:

1
BAt
| (,Un+1/2>THT_aT H M1~ 1 Hv"/2 _ Ha,
BAt free BAL ree
1 1
- B2A¢2 BAL
1
mag;eeHTM_IHv”“/ 2 tal H" M 'Hage.
1
- BZAL2
1

T n+1/2 T
@aﬁeeﬂ vt Qoo H Qfrec

= ,6’21At2 (U”H/Z)T Ho"t1/2 4 51At <v”+1/2)T Hagee +

1 T
@ (’Un—H/Q) Hafree + ag;eeHafree

1 T
M f. = (—Mﬂv”“/? - Hafree> M1 (Hy" /2 - Hafree>

(vn—i-l/Q)T HTM L Hon /2 1 (v”*l/Q)T H'M 'Hage. +

(v”H/Q)T Ho"t1/2 4 ﬂlAt <v”+1/2) ! Hageo + (97)

1 2
- hv ha hva
FAp Tt gay

where in the first passage we have used the transpose of a product formula (first of egs. 50), in the
third passage we have used the identity:

HM 'H=Cc"B'cM'c"B'C
—Cc"B'BB'C (98)
- H

. . . T .
and in the fourth passage we have used the identity ag;eeH o tl2 = (v"“/ 2) H agee which holds
thanks to eq. (53), since v"11/2 and @y are column vectors and matrix H is symmetric, see (88).

19

The third term, by using the definition of the free acceleration from the second of (85) and the
expression (86) of f., becomes:

- _ 1
fgeeM lfc = (Mafree)TM 1 <_

BAt H,vn+1/2 . Ha'free>

=al MM (- Hoy" /2 _ Hafree)

BAL
— _B1Atag;eeMTM_lﬂvn“/2 — (e MM ™' Haygpee (99)
= BlAtag;eeHv"“/Q — at o Hageo
L () Hag - af o
- _BlAthw By

where in the third passage we have exploited the fact that, since M is symmetric, MT = M,
so that MTM~! = MM~! = I. Furthermore, in the fourth passage we have used the identity
al Ho"+1/2 = (v"+1/2)T Hay., which holds thanks to eq. (53), since v"*1/2 and agee are column
vectors and H is a symmetric matrix, see (88).

Finally, by replacing the three terms (96), (97) and (99) the expression of the total energy jump (66)

becomes:
1 1 1 1
AE—-AW = —=—-1| =hy — 1—+>Athw
(1) 5[5+

1 1 1
- <25_1> i <1_2ﬁ> At o
1 1 1
:_<1_25> ﬂhv‘<1‘zﬁ>“hm

1 1
() ()

It is worth stressing that, in the above equation, the sole unknown is the parameter 5, whereas h,
and hyq are (known) scalars depending on the intermediate velocity v™+1/2 and on the free acceleration
Qfree, 1.€. ON the internal and external forces at the current time instant f. and f;. By replacing the
B parameter with the initially introduced o parameter through eq. (67), the energy jump expression
becomes:

(100)

1

AE — AW = (— 1) <2hv + At hva> (101)
a+1 a—+1

It is important to note that, according to this equation, the zero energy jump, i.e. total energy
conservation, can be achieved simply by setting to zero the first factor in (101), i.e. by choosing o = 0
(full-step constraint), and this independently from the values assumed by h, and hy,.

Since the eq. (101) is quadratic, indeed a second value of « exists which causes AE — AW = 0.
This is obtained by setting to zero the second factor, which gives:

2h,
a=— <1 - hm> (102)

However, recall that only the values between 0 and 1 are allowed for the parameter (0 < a < 1).
Substituting this constraint into (102) we obtain the following inequality:

2hy
-2<
~ At hy,

But, since it is not possible to determine a general relation between the scalars h,, hy, and the time
step At, the second energy-conserving solution does not seem to be usable in actual practice.

<-1 (103)

20

Instead, by taking o = 1 the energy jump from (101) is:
1
AE — AW = D) (hy + At hyg) (104)

So, with o = 1 the energy jump is negative (AE — AW < 0), if hy, + At hy, > 0. It is expected
that the latter condition be almost always satisfied, implying that the external and internal forces
cannot create accelerations that could produce velocities of a magnitude close to the one of the initial
impact velocity within a single time step increment. In the (unlikely) case that h, + At hy, < 0, the
energy jump would be positive, and this could eventually lead to stability issues.

It is important to note that the the choice of the parameter a = 0 vs. o = 1, induces a big difference
with respect to the management of the separation of the surfaces in contact. With o = 1 (half-step
constraint), the contact is maintained until the link forces become negative, whereby contact is broken
by a suitable rebound algorithm, since continuing it would be contrary to physics for non-cohesive
interactions.

Instead, with o = 0 (full-step constraint) the contact is maintained only until the next discrete
time instant, i.e. the degrees of freedom in interaction are always immediately separated. This means
that in a typical situation where the contact is (physically) supposed to be maintained for a certain
period of time, the algorithm with o = 0 will be continuously switching between contact and non-
contact conditions, causing strong oscillations in the contact force. On the other hand, the algorithm
with a = 0 always conserves the momentum and the total energy of the system, which is not the case
for the algorithm with a # 0. In principle, a could be equal to any value between 0 and 1, but the
physical meaning is only clear for « =0 and a = 1.

The algorithm with o = 0 (full-step constraint) could also be seen as a penalty method with an
infinite contact stiffness, but without penalizing the critical time step.

2.3.9 Summary of the obtained expressions

For all the strategies that have been outlined in the previous Sections, the application of the Lagrange
multipliers method involves the following common steps:
1. First, the matrix of connections is computed:

B* = Cm~'C" | (105)

2. Then, the right-hand side term is evaluated by using the appropriate expression for S (see
below):

W=S-Cm ' (f.—f) (106)

3. Next, the linear system is solved for the Lagrange multipliers:

A=B'w (107)

4. Finally, the reactions are computed:
(108)

The only expression that varies in the different formulations is that of the S vector used in (106) to
build the right-hand side W. It is summarized in the following Table for the various cases considered
in the previous Sections.

21

Constraint on Constraint equation Expression of S

Acceleration Ccrtlgnt! = pntt =b
Full-step velocity Crtlyntl — pntl S — % (b CU"H/Z)
Mid-step velocity Cntlynts/2 — pnitt S — W (b _ Cv”+1/2)

Parametrized velocity ~C"Hlontite/2 = prtl S — W (b _ C,Un+1/2>
Displacement Ccrtidnt? = pntt S = NS (Ati AR (b Ccd—- A" c "+1/2)

Table 1: Summary of analytical expressions.

22

3 Implementation notes

First, the input syntax of the LIAJ option has been modified by adding the new optional parameter
« introduced in Section 2.3.7. Then, we briefly present the code flowcharts and the most important
changes to implement the developments described in the previous Sections.

3.1 New syntax of the LIAJ option

The option LIAJ has been modified as follows (additions are shown in red):

OPTI ...
< LIAJ <ALPH alph> >

with the following descriptioon:

This option causes all constraints (imposed either via LIAT on via LINK COUP) on veloc-
ities to be expressed on the velocity at time n+1+«/2, rather than at time n+3/2, which
is the default in EUROPLEXUS (note that in this notation the current configuration is
indicated by n + 1). If the ALPH sub-keyword is omitted, the code assumes o« = 1.0 and
so the constraints are expressed at the next mid-step (time n + 3/2). If « is specified, it
must be 0.0 < a < 1.0. The value a = 0.0, corresponding to full-step velocity constraints
(at time n + 1), was used for example in PLEXIS-3C. Therefore, this option is mainly
useful in order to perform fine-grain comparisons between results of PLEXIS-3C and EU-
ROPLEXUS, for debugging purposes. Specifying intermediate values of o may be useful
to fine-tune the properties of some types of constraints, e.g. contacts or impacts, while
the value of o may be irrelevant for other types of constraints (e.g. blockages).

3.2 The LIAI directive

The code flowchart for the LIAT directive (old “liaisons” model) is presented in Figure 1. The COM-
PUTE_STEP routine contains the logic to perform one time step of the simulation. Its sibling routine
COMPUTE_STEP_PART routine is used instead of COMPUTE_STEP when a model with spatial
partitioning (PART) is used, i.e. a model in which the time step varies in space over the model, besides
varying in time. The partitioning model is described in reference [7].

Directive LIAI

COMPUTE_STEP BLIAIS—CALCBL
COMPUTESTEPPART:I |:FLIAIS FLIAVD
SMVCAL
CALCFL

Figure 1: Code flowchart for the LIAT directive.

Both these routines call the two main routines dealing with the constraints: BLIAIS builds the
B* matrix (matrix of connections) by calling an ancillary routine CALCBL, while FLIAIS computes
the reactions, by relying upon three ancillary routines. The FLIAVD routine is used for the imposed
motion constraints, i.e. imposed time-dependent displacements (DEPL), velocities (VITE) or accelera-
tions (ACCE). The SMVCAL routine transforms velocity-based constraints into their acceleration-based
form, according to Section 2.3.6.

It should be noted that at the moment of this writing the LIAI model is only compatible with the
spatial partitioning if all the linked nodes are placed in the lowest level of the partition (which is only
possible for permanent constraints). In other words, the PLIN option [1] which allows using different
time increments for the linked nodes cannot be activated with LIAT and can only be used with the
more modern LINK COUP model to be described next.

The changes in the source code are detailed in the next paragraphs.

23

3.2.1 Include COPT.INC

The real VOPTIS previously free slot is re-used to store the ALPHA_LIAJ parameter, corresponding
to « as specified in the OPTI LIAJ <ALPH alph> directive:

- & tupto,alpha_liaj
COMMON /COPTIS/ ZBAR,FQ95,TIONOR,angfsa,holeax,tolcno,dtdrop,

tfrom,tupto,alpha_liaj, alpha_liaj: il faut que 0. <= alpha_liaj <= 1
kfscr,KDPMA,KDPGR, IOSTEP, IEDSS,largcd, 1sgdio, alpha_liaj = 0. --> liaisons en vitesse a (n+1)
kpxlog,k2fibe,k2mesh,kfcube,kmtran,kdtml, (OPTI LIAJ sans ALPH)
1scoor,lselem,lsgibi,lsgril,lsepai,lsnorn, alpha_liaj = 1. --> liaisons en vitesse a (n+3/2)

(default, donc sans OPTI LIAJ)
donc pour alpha quelconque (OPTI LIAJ ALPH alph),
liaisons en vitesse a (n+l+alpha/2)

kvcont,liajrc,k2chel,render_safe,render_dump,
new_£f134,kdtbe,render_stat,manfsr,flsc8,
prgr

VVVVVVYV
aacaaacaaaa

REAL(8) :: ZBAR,FQ95,TIONOR,angfsa,holeax,tolcno,dtdrop,tfrom,

3.2.2 Subroutine RAZOPT
In the subroutine RAZOPT we add the initialization of ALPHA_LIAJ at its default value (a = 1.0):
——— commun coptis

CALL DRAZ(10,ZBAR)

ALPHA_LIAJ = 1.DO ! Liaisons en vitesse a (n+3/2) par defaut

CALL IRAZ(30,KFSCR)
CALL DESTROY_LINKS_FS

3.2.3 Subroutine OPTION

In the subroutine OPTION we add the reading of the new optional ALPH sub-keyword of the LIAJ
option:

CALL LIRMOT (MOLIAJ, NMLIAJ, KOP) ! On cherche a lire le mot-cle ALPH

INTEGER, PARAMETER :: NMOT=155, NDECE=3, NIMPO=2, NMADDF=11, SELECT CASE (KOP)
- CASE (1) ! ALPH

> NMDOMD=5, NMRZEL=1, NMRIGB=4, NMLIAJ=1 CALL LIRE (3) ! On cherche a lire la valeur de alpha
. ALPHA_LIAJ = DPREC

CHARACTER(4) :: CDECE(NDECE), CIMPO(NIMPO), MADDF (NMADDF), IF (ALPHA_LIAJ < 0.DO .OR. ALPHA_LIAJ > 1.D0) THEN
NN CALL ERRMSS (’OPTION’,

> MORIGB(NMRIGB), MOLIAJ(NMLIAJ) > JINVALID ALPH VALUE FOR LIAJ (MUST BE O<=ALPH<=1)’)
NN CALL EPX_STOP

DATA MOLIAJ /’ALPH’/ > (’OPTION :INVALID ALPH VALUE FOR LIAJ (MUST BE 0<=ALPH<=1)’)

PR ENDIF
*---- "liaj" : liaisons concern velocities at (n+i+alpha/2), not at (n+3/2) CASE DEFAULT
CASE (111) GOTO 1
LIAJRC = 1 ! On a 1lu 1’option LIAJ (eventuellement suivie par ALPH) END SELECT

ALPHA_LIAJ = 0.DO ! Si LIAJ sans ALPH (ancienne syntaxe), ALPHA=0 GO TO 111
! donc liaisons en vitesse a (n+1) .
111 CONTINUE

3.2.4 Subroutine IMPOPT

In the subroutine IMPOPT we improve the printout of the LIAJ option and add the printout of the
coefficient ALPHA LIAJ:

*m—m options for liaisons
IF (LIAJRC.EQ.1) THEN ! Mot-cle LIAJ, eventuellement suivi par ALPH
WRITE(TAPOUT,1512) ALPHA_LIAJ
ENDIF

1512 FORMAT(/,T10,
> LIAI/LINK EN VITESSES A (N+1+ALPHA/2), PAS A (N+3/2)°,/,
> »ALPHA=",1PD12.5)

1512 FORMAT(/,T10,

> ’LIAI/LINK ON VELOCITIES AT (N+1+ALPHA/2), NOT (N+3/2)’,/,
> ’ALPHA=’,1PD12.5)

24

3.2.5 Subroutine FLIAIS

The old and new relevant parts of the subroutine FLIAIS are shown side-by-side to highlight the

changes:

01d code

REAL(8) :: AUX, SMDTV
IF (LIAJRC == 1) THEN
la liaison porte sur les vitesses au pas (n+1)
SMDTV = 2.D0 / DT1
ELSE
par defaut la liaison porte sur les vitesses au pas (n+3/2)
IF (IFLAG2 == 1) THEN
cas de la collision et des chocs entre structures articulees composees
de corps rigides : il y a choc
SMDTV = 1.DO
ELSE
cas normal
IF (NPAS == 0) THEN
SMDTV = 2.D0 / DT2
ELSE
SMDTV = 2.D0 / (DT1 + DT2)

*

*

*

*

*

New code

REAL(8) :: AUX, SMDTV, ALPH
IF (NPAS == 0) THEN
ALPH = 1.DO ! Au pas 0, on ecrit les liaison en vitesse
! toujours sur (n+3/2) quelque soit la valeur
! ALPHA_LIAJ dans 1’input
ELSE
ALPH = ALPHA_LIAJ
ENDIF
*

IF (IFLAG2 == 1) THEN ! On ne tient pas compte de OPTI LIAJ eventuel

* cas de la collision et des chocs entre structures articulees composees
* de corps rigides : il y a choc
SMDTV = 1.DO
ELSE ! Cas normal (il n’y a pas de collisions)
'fc on n’a pas besoin de tester LIAJRC, il suffit d’utiliser ALPHA_LIAJ
!fc la liaison porte sur les vitesses au pas (n+l+alpha/2):

ENDIF tfc si OPTI LIAJ n’a pas ete specifie, par defaut ALPHA_LIAJ=1.0,
ENDIF Ifc ce qui correspond a ecrire les liaisons en vitesse a (n+3/2)
ENDIF IF (NPAS == 0) THEN

SMDTV = 2.D0 / (ALPH*DT2)
ELSE
SMDTV = 2.D0 / (DT1 + ALPH*DT2)
ENDIF
ENDIF

First, a local value of o (ALPH) is computed. This is equal to the o value given in input in the
LIAJ option (ALPHA_LIAJ) except at step 0, where we take a = 1.0. The effect of this is that, as
already mentioned, at step 0 (n = —1) any velocity-based constraints are always expressed at time
station n + 1 +1/2 = 1/2, corresponding to time ¢t'/2 = t® + At! /2 (mid-step), irrespective of the o
value set in input, instead of time station n + 1 4+ a/2 or time t + aAt!/2.

This is, firstly, to avoid a pathological situation (division by zero) if one chooses o« = 0 (LIAJ
without ALPH). This is a consequence of the fact that the initial velocity v is set in the input and
must not be modified. The second reason is to avoid potentially very large accelerations due to
constraints at the zero step, which could arise for very small (albeit not zero) values of a. So, as
already mentioned, the actual value of a given in input starts being used only from step 1 on.

The test on IFLAG2 has been moved outside the test on LIAJRC. In the old code, the case of
IFLAG2 equal to 1 was only treated when the LIAJ option was not specified, while now it is always
treated and in any case leads to setting SMDTV to 1. This case is for an old model of collisions
between rigid articulated bodies which is not documented and in practice never used in EPX and it
is kept only to let old test cases to run.

In the normal case (IFLAG2 equal 0), the definition of SMDTV is modified by replacing DT2
with ALPH*DT2. This causes velocity-based links to be expressed at the parametrized time ¢! +
QAT /2,

The value of SMDTYV is eventually passed to subroutine SMVCAL which transforms any velocity-
based constraint into its equivalent acceleration-based form before forming and solving the linear
system:

CALL SMVCAL (SNDMBR(IR), NBPLI(1,IR), LPAIR(IAD), COEFL(IAD),
> V, SMDTV)

A notable exception is the case of imposed velocities (VITE), which are not treated in SMVCAL
but rather in subroutine FLIAVD, described in the next paragraph:
' .IF (NBIMPO > 0) THEN
* cas des accelerations, vitesses et deplacements imposes

CALL FLIAVD (SNDMBR, G, V, DFX)
ENDIF

Note that FLIAVD treats all imposed motions, i.e. not only imposed velocities, but also imposed
displacements (DEPL) and accelerations (ACCE). However, the velocity parametrization only concerns
the imposed velocities. The imposed accelerations are always expressed at the current time station
n + 1 while the imposed displacements are always expressed at the next time station n + 2.

25

3.2.6 Subroutine FLIAVD

The subroutine FLIAVD treats imposed motion constraints. The subroutine text is listed below. The
formulation used is rather obscure, therefore for the moment this routine is not modified in order to
take into account the possible presence of the ALPH keyword in the input.

01d code ELSE
SUBROUTINE FLIAVD(SM2,G,V,DFX) SMDTV = 2.D0O / DT2
* SMDTD = 1.DO / (DT2*DT2)
* ENDIF
* ENDIF
* calcul du 2eme membre pour les acce.,vit.,depl. imposes *
* h. bung 01-86 *
* DO IR=1,NLIE
* ITY=NPLIE(1,IR)
* *
USE M_OLIAISONS_DATA SELECT CASE (ITY)
*
CASE (10:13)
INCLUDE ’NONE.INC’ IFCO = NPLIE(4,IR)
* IFONC = NINT(FCOEF(2,IFC0))
INCLUDE ’COPT.INC’ *o—— calcul des fonctions au temps t et t+dt2
INCLUDE °LIESON.INC’ CALL CALC_FONCTION(IFONC,T ,WP1)
INCLUDE ’TEMPS.INC’ CALL CALC_FONCTION(IFONC,T+DT2,WP2)
INCLUDE ’TEMPX.INC’ *
* FVAL1 = WP1xFCOEF(1,IFC0) + FCOEF(3,IFCO)
* organisation de <fcoef> : dimension fcoef(3,mxfcoe) FVAL2 = WP2xFCOEF (1,IFC0) + FCOEF(3,IFCO0)
* *cceceeeeee dfsdt = (fval2 - fvall)*smdtv*0.5d0
* fcoef(1,ifco) : valeur du coefficient (valco) *
* fcoef(2,ifco) : ifonc no de la fonction f(t) KAD=NBPLI(2,IR)
* fcoef(3,ifco) : valeur pour t = 0 (valO) IP0S=LPAIR(KAD)
* f=== Traitement spAQcifiques du 2 membre poutr ity=10,11,12
* val = val0 + valcoxfonction(t) ITY1=ITY
* SELECT CASE(ITY1)
* wpl = valeur de la fonction ifonc au temps t
* wp2 = valeur de la fonction ifonc au temps t+dt2 CASE (10)
* *o—— acceleration impose
* ity = 10 : acceleration imposee SM2(IR) = FVAL1
* ity = 11 : vitesse imposee
* ity = 12 : deplacement imposee CASE (11)
* ity = 13 : element d.r.i.t. fait dans blsoli *o———— vitesse imposee
* FVALE = FVAL1
* IF(NPAS == 0) FVALE = 0.5D0x(FVAL1+FVAL2)
REAL(8), INTENT(IN) :: G(x),V(*),DFX(%) SM2(IR) = (FVALE - V(IPOS)) * SMDTV
REAL(8), INTENT(OUT) :: SM2(x)
* CASE (12)
INTEGER :: IR,ITY,KAD,IPOS,IFONC,IFCO,ITY1 ke deplacement impose
REAL(8) :: FVAL1,FVAL2,FVALE,SMDTV,SMDTD,AUX,WP1,WP2 IF(NPAS /= 0) THEN
* SM2(IR) = (FVAL2 - DFX(IP0S) - V(IPOS)*DT2) * SMDTD
* ELSE
e le 2 eme membre des relations SM2(IR) = 2.DO*SMDTD*#FVAL2 - V(IPOS)*SMDTV
* ENDIF
IF (LIAJRC.EQ.1) THEN END SELECT
* *
e la liaison porte sur les vitesses au pas (n+1) * sinon on ne fait rien
SMDTV = 2D0 / DT1 T
AUX = DT2%(DT1+DT2) CASE DEFAULT
SMDTD = 2D0 / AUX CYCLE
ELSE END SELECT
* *
*m—m par defaut la liaison porte sur les vitesses au pas (n+3/2) *
IF(NPAS.NE.O) THEN END DO
SMDTV = 2D0 / DT1 *
AUX=DT2*(DT1+DT2) END SUBROUTINE FLIAVD

SMDTD = 2D0 / AUX

26

3.3 The LINK COUP directive

The code flowchart for the LINK COUP directive (new coupled “links” model) is presented in Figure 2.
The CALCFL routine computes the right-hand side of the constraints. The flowchart is similar to that
of the LIATI case but slightly more complicated due to the data structure and data organization used
in the LINK COUP model. The COMPUTE_STEP and COMPUTE_STEP_PART routines already de-
scribed for the LIAI case call either FE_.TRUE_LIAIS or FE_LINKS (in the case of COMPUTE_STEP
through an intermediate routine CALCUL_LINK contained in the CALCUL source file), both in the
M_LINKS module, depending upon the organization of the links.

Directive LINK COUP

SOLVE _SINGLE LIAISON ----
“ALCUL:: - =
COMPUTE STEP CALCU

FE_TRUE_LIAIS —SOLVE_LIAISONS_GROUP
CALCUL_LINK SOLVE TWO_LIAISONS
COMPUTE_STEP PART FE_LINKS SOLVE LINKS GROUP

SOLVE_GROUP---=-=-=-=----

M_LINK AVD::

SOLVE _SINGLE LIAISON—— g5 b SN G E Dva

SOLVE TWO LIAISONS
M_LINK_SOLVER:

SOLVE_GROUP COMPUTE CGAMMA
M_MATRIX_SOLVER::

COMPUTE BL (Choleski) or CKLCBL_MATRJX (Splib or Pardiso)
SMVCALCUL

CALCULFL

FLINKS

Figure 2: Code flowchart for the LINK COUP directive.

The first routine (FE_TRUE_LIAIS) is called if the constraints are stored in a (doubly-)linked list
form, while the second (FE_LINKS) is called when the constraints are stored in a dynamic array. The
first type of data structure is extremely powerful since it allows almost arbitrary manipulations of the
constraints within the list, but it is computationally expensive to use, since addressing a particular
link requires traversing the list. The second organization is less flexible as concerns the manipulation
of constraints but much more efficient computationally, since any constraint in the array can be
addressed directly simply by its index.

By default, the set of links is split into a number of mutually independent sub-sets (or “groups” of
links) (unless the SPLT NONE keyword is specified after LINK COUP). The degrees of freedom (dofs) in
each group are disjoint, i.e. they appear only in that group. Then, instead of solving a monolithic linear
system (like in the case of the LIAT model), each group is solved separately. This is accomplished by
calling three possible routines: SOLVE_SINGLE_LIAISON deals with a group containing a single link,
which is solved analytically (no need to form a matrix and to invert it). The SOLVE_TWO_LIAISONS
routine deals with groups containing two links, and again the solution is analytical (although much
more involved than for Finally, SOLVE_GROUP is involved if the group contains more than two links
and in that case a numerical solution similar to that of the LIAT model is carried out.

However, it should be noted that in order to activate the detection of two-constraint groups and
their solution through SOLVE_TWO_LIAISONS, the user must activate an optional keyword SOL2,
see [1]. In fact, by default, EPX uses SOLVE_GROUP also for groups containing only two links. All
these routines are contained in the M_LINKS module.

The numerical solution is obtained in SOLVE_GROUP by calling lower-level routines (from mod-
ule M_LINK_SOLVER) which are roughly similar to those of the LIAT model shown in Figure 1:
COMPUTE_BL is similar to CALCBL, SMVCALCUL is similar to SMVCAL, CALCULFL is similar
to CALCFL and FLINKS is similar to the last part of FLIAIS.

27

An additional routine COMPUTE_CGAMMA is called at the beginning of SOLVE_GROUP.
Roughly, this routine computes the term C~y, where C is the matrix of constraint coefficients (left-
hand sides) and + is typically a scalar related to the time step, see [7]. However, in the case of
asynchronous constraints, which may occur in models using time partitioning (PART) if one activates
the PLIN option, the scalar « is replaced by a matrix T, since in that case the time step can vary from
one node to another [7].

28

3.3.1 Subroutine SOLVE_SINGLE_LIAISON

The old and new relevant parts of the subroutine SOLVE_SINGLE_LIAISON are shown side-by-side

to highlight the changes:

01d code

SUBROUTINE SOLVE_SINGLE_LIAISON (L, XM, FI, V, FE, KFIFS, FIFS,
MVGRIL, CBALE, INDOX, NUMN, X,
DFX, POSP, IDOM, POSECR, ECR,
POSIG, SIG, RO, WG,
FSVECT, DU, THEREF)

Lo S

INCLUDE ’COPT.INC’
*
* calcul de dtsum

IF (NPAS == 0) THEN

DTSUM = DT2
ELSE

DTSUM = DT1 + DT2
ENDIF

CALL SOLVE_SINGLE_DVA (L, XM, FI, V, FE, DFX, DTSUM, K)

New code

SUBROUTINE SOLVE_SINGLE_LIAISON (L, XM, FI, V, FE, KFIFS, FIFS,

& MVGRIL, CBALE, INDOX, NUMN, X,
& DFX, POSP, IDOM, POSECR, ECR,
& POSIG, SIG, RO, WG,

& FSVECT, DU, THEREF)

INCLUDE ’COPT.INC’

INCLUDE ’CSCONT.INC’ ! For IFLAG2

IF (NPAS == 0) THEN
ALPH = 1.DO ! Au pas O, on ecrit les liaisons en vitesse
! toujours sur (n+3/2) quelque soit la valeur
! de ALPHA_LIAJ dans 1’input
ELSE
ALPH = ALPHA_LIAJ
ENDIF

* calcul de dtsum

IF (IFLAG2 == 1) THEN ! On ne tient pas compte de OPTI LIAJ eventuel

* cas de la collision et des chocs entre structures articulees composees

* de corps rigides

'fc
'fc
'fc
tfc

: il y a choc
DTSUM = 1.DO
ELSE ! Cas normal (il n’y a pas de collisions)
on n’a pas besoin de tester LIAJRC, il suffit d’utiliser ALPHA_LIAJ
la liaison porte sur les vitesses au pas (n+l+alpha/2):
si OPTI LIAJ n’a pas ete specifie, par defaut ALPHA_LIAJ=1.0,
ce qui correspond a ecrire les liaisons en vitesse a (n+3/2)
IF (NPAS == 0) THEN
DTSUM = ALPH*DT2
ELSE
DTSUM = DT1 + ALPH*DT2
ENDIF
ENDIF

CALL SOLVE_SINGLE_DVA (L, XM, FI, V, FE, DFX, ALPH, DTSUM, K)

First, a local value of a (ALPH) is computed, exactly like in subroutine FLIAIS as explained in
Section 3.2.5. Then, the definition of DTSUM is modified by replacing DT2 with ALPH*DT?2. This
causes velocity-based links to be expressed at the parametrized time "1 + OJA?—H /2.

Finally, the value of ALPH is passed to subroutine SOLVE_SINGLE_DVA to take into account the
parametrization in the case of an imposed velocity constraint (VITE) with variable coefficients (link

of class 1 or 3), as shown in the next paragraph.

29

3.3.2 Subroutine SOLVE_SINGLE_DVA
The old and new relevant parts of the subroutine SOLVE_SINGLE_DVA are shown side-by-side to

highlight the changes:

01d code
SUBROUTINE SOLVE_SINGLE_DVA (L, XM, FI, V, FE, DFX, DTSUM, K)
REAL(8), INTENT(IN) :: XM(*), FI(*), V(*), DFX(x), DTSUM
CASE (11) ! V(T"N+3/2)

SELECT CASE (LCLA)

CASE (0,2)
VAL = FAC

CASE (1,3)
FUN = LY%LDATA(1)
VAL = TIME_VALUE (FUN, T + 0.5D0*DT2) * FAC ! IMPOSED V
CALL SET_LIAI_BTERM (L, VAL) ! ONLY FOR VERI

CASE DEFAULT
CALL ERRMSS (’SOLVE_SINGLE_DVA’,’INVALID LCLA’)
CALL EPX_STOP(’SOLVE_SINGLE_DVA’)

END SELECT

FE(K) = FI(K) + 2.DO*XM(K)*(VAL-V(K))/DTSUM

The value of ALPH received from the caller routine (SOLVE_SINGLE_LIAISON) is used to take
into account the parametrization in the case of an imposed velocity constraint (VITE) with variable

coefficients (link of class 1 or 3).

New code

30

REAL(8), INTENT(IN) ::

SUBROUTINE SOLVE_SINGLE_DVA (L, XM, FI, V, FE, DFX, ALPH, DTSUM,

> K)

XM(*), FI(x), V(*), DFX(*), ALPH, DTSUM

CASE (11) ! V(T N+1+ALPH/2)

SELECT CASE (LCLA)
CASE (0,2)
VAL = FAC
CASE (1,3)
FUN = LY%LDATA(1)
VAL = TIME_VALUE (FUN, T + 0.5DO*ALPH+DT2) % FAC ! IMPOSED V
CALL SET_LIAI_BTERM (L, VAL) ! ONLY FOR VERI
CASE DEFAULT
CALL ERRMSS (’SOLVE_SINGLE_DVA’,’INVALID LCLA’)
CALL EPX_STOP(’SOLVE_SINGLE_DVA’)
END SELECT
FE(K) = FI(K) + 2.DO*XM(K)*(VAL-V(K))/DTSUM

3.3.3 Subroutine SOLVE_TWO_LIAISONS

The old and new relevant parts of the subroutine SOLVE_TWO_LIAISONS are shown side-by-side to

highlight the changes:

01d code

SUBROUTINE SOLVE_TWO_LIAISONS (LL, XM, FI, V, FE, KFIFS, FIFS,
& MVGRIL, CBALE, INDOX, NUMN, X,
& POSECR, ECR, POSP, POSIG, SIG,
& DFX, RO, WG, FSVECT, IDOM)

INCLUDE ’CSCONT.INC’

REAL(8) :: DTSUM, AUX, FAC, VAL, LAMBDA1, LAMBDA2, Al1, A12, A22,
> 71, zZ2, CI, DI, CX, DELTA, GAMMAI, DTO, DTN, AMX

* calcul de dtsum
IF (NPAS == 0) THEN

DTSUM = DT2
ELSE
DTSUM = DT1 + DT2
ENDIF
CASE (11) ! VITE

LCLA = L%LCLASS
FAC = L%RDATA(1)
SELECT CASE (LCLA)
CASE (0)
VAL = FAC
CASE (1)
FUN = LY%LDATA(1)
VAL = TIME_VALUE (FUN, T + 0.5D0*DT2) * FAC
CASE DEFAULT
CALL ERRMSS (’SOLVE_TWO_LIAISONS’,’INVALID LCLA’)
CALL EPX_STOP(’’)
END SELECT
CALL SET_LIAI_BTERM (L, VAL)

IF (IPARTI /= O .AND. PLINKS == 1) THEN
* (potentially) asynchronous case : <cgamma> = <c> * <gamma>

DO I =1, LD1

IF (NPAS == 0) THEN

DTO = 0.DO
ELSE

DTO = DELTNO(NOD) ! OLD DT OF NODE
ENDIF

NDTN = LEVFAC_NODE(NOD)
DTN = DELMIN*MAXSUB / NDTN ! NEW DT OF NODE
GAMMAI = 0.5DO0*(DTO + DTN)
CGAMMA1(I) = CGAMMA1(I)*GAMMAI
END DO
ELSE
* normal case (synchronous) : <cgamma> = <c> * gamma
GAMMAI = 0.5DO*DTSUM
DO I =1, LD1
CGAMMA1(I) = CGAMMA1(I)*GAMMAI
END DO
ENDIF

IF (IPARTI /= O .AND. PLINKS == 1) THEN
* (potentially) asynchronous case : <cgamma> = <c> * <gamma>

DO I =1, LD2

IF (NPAS == 0) THEN

DTO = 0.DO
ELSE

DTO = DELTNO(NOD) ! OLD DT OF NODE
ENDIF

NDTN = LEVFAC_NODE(NOD)
DTN = DELMIN*MAXSUB / NDTN ! NEW DT OF NODE

GAMMAI = 0.5DO0*(DTO + DTN)
CGAMMA2(I) = CGAMMA2(I)*GAMMAI
END DO
ELSE

* normal case (synchronous) : <cgamma> =
GAMMAI = 0.5DO*DTSUM
DO I =1, LD2
CGAMMA2(I) = CGAMMA2(I)*GAMMAI
END DO
ENDIF

<c> * gamma

31

New code
SUBROUTINE SOLVE_TWO_LIAISONS (LL, XM, FI, V, FE, KFIFS, FIFS,
& MVGRIL, CBALE, INDOX, NUMN, X,
& POSECR, ECR, POSP, POSIG, SIG,
& DFX, RO, WG, FSVECT, IDOM)

INCLUDE ’CSCONT.INC’ ! For IFLAG2

REAL(8) :: DTSUM, AUX, FAC, VAL, LAMBDA1, LAMBDA2, Ai1, A12, A22,
> Z1, z2, CI, DI, CX, DELTA, GAMMAI, DTO, DTN, AMX, ALPH

IF (NPAS == 0) THEN
ALPH = 1.DO ! Au pas O, on ecrit les liaisons en vitesse
! toujours sur (n+3/2) quelque soit la valeur
! de ALPHA_LIAJ dans 1’input
ELSE
ALPH = ALPHA_LIAJ
ENDIF
*
* calcul de dtsum

IF (IFLAG2 == 1) THEN ! On ne tient pas compte de OPTI LIAJ eventuel

* cas de la collision et des chocs entre structures articulees composees
* de corps rigides : il y a choc
DTSUM = 1.DO
ELSE ! Cas normal (il n’y a pas de collisions)
on n’a pas besoin de tester LIAJRC, il suffit d’utiliser ALPHA_LIAJ
la liaison porte sur les vitesses au pas (n+l+alpha/2):
si OPTI LIAJ n’a pas ete specifie, par defaut ALPHA_LIAJ=1.0,
ce qui correspond a ecrire les liaisons en vitesse a (n+3/2)
IF (NPAS == 0) THEN
DTSUM = ALPH*DT2

'fc
'fc
'fc
'fc

ELSE
DTSUM = DT1 + ALPH*DT2
ENDIF
ENDIF
CASE (11) ! VITE

LCLA = L%LCLASS
FAC = L%RDATA(1)
SELECT CASE (LCLA)
CASE (0)
VAL = FAC
CASE (1)
FUN = LY%LDATA(1)
VAL = TIME_VALUE (FUN, T + 0.5DO*ALPH*DT2) * FAC
CASE DEFAULT
CALL ERRMSS (’SOLVE_TWO_LIAISONS’,’INVALID LCLA’)
CALL EPX_STOP(’’)
END SELECT
CALL SET_LIAI_BTERM (L, VAL)

IF (IPARTI /= O .AND. PLINKS == 1) THEN

* (potentially) asynchronous case : <cgamma> = <c> * <gamma>
DO I =1, LD1
IF (NPAS == 0) THEN
DTO = 0.DO
ELSE
DTO = DELTNO(NOD) ! OLD DT OF NODE
ENDIF
NDTN = LEVFAC_NODE(NOD)
DTN = DELMIN*MAXSUB / NDTN ! NEW DT OF NODE
GAMMAT = 0.5D0*(DTO + ALPH*DTN)
CGAMMA1(I) = CGAMMA1(I)*GAMMAI
END DO
ELSE
* normal case (synchronous) : <cgamma> = <c> * gamma
GAMMAI = 0.5DO*DTSUM
DO I =1, LD1
CGAMMA1(I) = CGAMMA1(I)*GAMMAI
END DO
ENDIF
IF (IPARTI /= O .AND. PLINKS == 1) THEN
* (potentially) asynchronous case : <cgamma> = <c> * <gamma>
DO I =1, LD2
IF (NPAS == 0) THEN
DTO = 0.DO
ELSE
DTO = DELTNO(NOD) ! OLD DT OF NODE
ENDIF
NDTN = LEVFAC_NODE(NOD)
DTN = DELMIN*MAXSUB / NDTN ! NEW DT OF NODE

GAMMAI = 0.5DO0x(DTO + ALPH*DTN)
CGAMMA2(I) = CGAMMA2(I)*GAMMAI
END DO
ELSE
* normal case (synchronous) : <cgamma> = <c> * gamma
GAMMAI = 0.5DO*DTSUM
DO I =1, LD2
CGAMMA2(I) = CGAMMA2(I)+*GAMMAI
END DO
ENDIF

First, a local value of a (ALPH) is computed, exactly like in subroutine FLIAIS as explained in
Section 3.2.5. Then, the definition of DTSUM is modified by replacing DT2 with ALPH*DT?2. This
causes velocity-based links to be expressed at the parametrized time t"*! + OZA?—H /2.

Finally, the value of ALPH is used also to take into account the parametrization in the case of
an imposed velocity constraint (VITE) and in the case of potentially asynchronous constraints with
partitioning (PART), similarly to what is done in subroutine COMPUTE_CGAMMA (see Section 3.3.5
below).

32

3.3.4 Subroutine SOLVE_GROUP

The old and new relevant parts of the subroutine SOLVE_GROUP are shown side-by-side to highlight
the changes:

01d code New code
SUBROUTINE SOLVE_GROUP (NLIE, NBC, LL_ARRAY, LS, SUBROUTINE SOLVE_GROUP (NLIE, NBC, LL_ARRAY, LS,
& HAS_VARIABLE_COEFS, & HAS_VARIABLE_COEFS,
& HAS_NON_PERMANENT_LINKS, & HAS_NON_PERMANENT_LINKS,
& HAS_REMOTE_DOFS, & HAS_REMOTE_DOFS,
& XM, FI, V, FE, KFIFS, FIFS, & XM, FI, V, FE, KFIFS, FIFS,
& MVGRIL, CBALE, INDOX, NUMN, X, & MVGRIL, CBALE, INDOX, NUMN, X,
& POSECR, ECR, POSP, POSIG, SIG, & POSECR, ECR, POSP, POSIG, SIG,
& DFX, RO, WG, FSVECT, IDOM, DU, THEREF) & DFX, RO, WG, FSVECT, IDOM, DU, THEREF)
REAL(8) :: DTSUM, AUX, FAC, VAL, VNORM(3), FNORM, AMU, FLC(2), REAL(8) :: DTSUM, AUX, FAC, VAL, VNORM(3), FNORM, AMU, FLC(2),
& DTSUM_OLD, RBID(1), FTNOR, FTTAN, MU, REDU, FLC2, & DTSUM_OLD, RBID(1), FTNOR, FTTAN, MU, REDU, FLC2,
> SHA1, SHA2 > SHA1, SHA2, ALPH
* calcul de dtsum IF (NPAS == 0) THEN
IF (NPAS == 0) THEN ALPH = 1.D0O ! Au pas O, on ecrit les liaison en vitesse
DTSUM = DT2 ! toujours sur (n+3/2) quelque soit la valeur
ELSE ! ALPHA_LIAJ dans 1’input
DTSUM = DT1 + DT2 ELSE
ENDIF ALPH = ALPHA_LIAJ
P ENDIF
* *
* update the coefficients and the right hand side of the liaisoms, * calcul de dtsum
* if needed, **before** building up 1s’coefl(:) and 1lsism(:) IF (IFLAG2 == 1) THEN ! On ne tient pas compte de OPTI LIAJ eventuel
* * cas de la collision et des chocs entre structures articulees composees
ILIES = 0 * de corps rigides : il y a choc
2 ILIES = ILIES + 1 DTSUM = 1.DO
IF (ILIES <= NLIE) THEN ELSE ! Cas normal (il n’y a pas de collisions)
L => LL_ARRAY(ILIES)%LIAISON !fc on n’a pas besoin de tester LIAJRC, il suffit d’utiliser ALPHA_LIAJ
IF (L%LCLASS /= 0 .AND. LY%LCLASS /= 2) THEN !fc la liaison porte sur les vitesses au pas (n+l+alpha/2):
ITYP = L4LTYPE tfc si OPTI LIAJ n’a pas ete specifie, par defaut ALPHA_LIAJ=1.0,
SELECT CASE (ITYP) 'fc ce qui correspond a ecrire les liaisons en vitesse a (n+3/2)
IF (NPAS == 0) THEN
CASE (11) ! VITE DTSUM = ALPH*DT2
LCLA = LJ%LCLASS ELSE
FAC = L%RDATA(1) DTSUM = DT1 + ALPH*DT2
SELECT CASE (LCLA) ENDIF
CASE (0, 2) ENDIF
VAL = FAC .
CASE (1, 3) *
FUN = L%LDATA(1) * update the coefficients and the right hand side of the liaisons,
VAL = TIME_VALUE (FUN, T + 0.5D0*DT2) * FAC * if needed, **before** building up lslcoefl(:) and ls%sm(:)
CASE DEFAULT *
CALL ERRMSS (’SOLVE_GROUP’,’INVALID LCLA’) ILIES = 0
CALL EPX_STOP(’’) 2 ILIES = ILIES + 1
END SELECT IF (ILIES <= NLIE) THEN
CALL SET_LIAI_BTERM (L, VAL) L => LL_ARRAY(ILIES)%LIAISON

IF (L%LCLASS /= O .AND. L%LCLASS /= 2) THEN
ITYP = LYLTYPE
SELECT CASE (ITYP)

CASE (11) ! VITE
LCLA = LY%LCLASS
FAC = L%RDATA(1)
SELECT CASE (LCLA)
CASE (0, 2)
VAL = FAC
CASE (1, 3)
FUN = LY%LDATA(1)
VAL = TIME_VALUE (FUN, T + 0.5DO*ALPH+DT2) * FAC
CASE DEFAULT
CALL ERRMSS (’SOLVE_GROUP’,’INVALID LCLA’)
CALL EPX_STOP(’’)
END SELECT
CALL SET_LIAI_BTERM (L, VAL)

First, a local value of a (ALPH) is computed, exactly like in subroutine FLIAIS as explained in
Section 3.2.5. Then, the definition of DTSUM is modified by replacing DT2 with ALPH*DT?2. This
causes velocity-based links to be expressed at the parametrized time t"*! + aA?’H /2.

Finally, in the case of an imposed velocity constraint (VITE) with variable coefficients (link of
class 1 or 3), the time function is evaluated at the parametrized time, again by replacing DT2 with
ALPH*DT?2.

33

3.3.5 Subroutine COMPUTE_CGAMMA

The old and new relevant parts of the subroutine COMPUTE_CGAMMA are shown side-by-side to
highlight the changes:

01d code New code
SUBROUTINE COMPUTE_CGAMMA (LL_ARRAY, NLIE, COEFL, DTSUM, LPAIR, SUBROUTINE COMPUTE_CGAMMA (LL_ARRAY, NLIE, COEFL, DTSUM, LPAIR,
> IFLAG2, CGAMMA) > IFLAG2, CGAMMA)
* *
*fc 9 march 2006: compute cgamma: *fc 9 march 2006: compute cgamma:
* for a link on velocities: cgamma = coefl * gamma * for a link on velocities: cgamma = coefl * gamma
* for a link on accelerations: cgamma = coefl * for a link on accelerations: cgamma = coefl
* *
USE M_PARTITION_DATA * Prise en compte de 1’option LIAJ <ALPH alph>:
* * - dtsum calcule dans SOLVE_GROUP tient deja compte
INCLUDE ’TEMPX.INC’ * de 1’eventuelle presence de 1’option LIAJ <ALPH alph>
. * - par contre, dans le "(potentially) asynchronous case" ci-dessous
* * on n’utilise pas dtsum et donc il faut tenir compte
* locals * de 1’eventuelle presence de 1’option LIAJ <ALPH alph>
TYPE(LIAISON), POINTER :: L *
INTEGER :: K, ILIES, NDL, ITYP, I, IDOF, NOD, NDTN USE M_PARTITION_DATA
REAL(8) :: DTO, DTN, GAMMAI *
LOGICAL :: ON_VELOCITIES INCLUDE ’COPT.INC’ ! For ALPHA_LIAJ
* INCLUDE ’TEMPX.INC’
K=0 .
DO ILIES = 1, NLIE *
* locals

IF (ON_VELOCITIES) THEN
* link on velocities
IF (IPARTI /= O .AND. PLINKS == 1) THEN
* (potentially) asynchronous case : <cgamma> = <c> * <gamma>
DO I =1, NDL
K=K+1
IDOF = LPAIR(K)
NOD = DOF_NODE(IDOF)
IF (NPAS == 0) THEN

! CONCERNED DOF
! CORRESPONDING NODE

DTO = 0.DO
ELSE

DTO = DELTNO(NOD) ! OLD DT OF NODE
ENDIF

NDTN = LEVFAC_NODE(NOD)
DTN = DELMIN#MAXSUB / NDTN ! NEW DT OF NODE
GAMMAI = 0.5D0*(DTO + DTN)
CGAMMA (K) = COEFL (K)*GAMMAT
END DO
ELSE
* normal case (synchronous) : <cgamma> = <c> * gamma
GAMMAI = 0.5DO*DTSUM
DO I =1, NDL
K=K+1
CGAMMA (K) = COEFL(K)*GAMMAT
END DO
ENDIF
ELSE
* link on accelerations
DO I =1, NDL
K=K+1
CGAMMA(K) = COEFL(K)
END DO
ENDIF
END DO

TYPE(LIAISON), POINTER :: L

INTEGER :: K, ILIES, NDL, ITYP, I, IDOF, NOD, NDTN
REAL(8) :: DTO, DTN, GAMMAI, ALPH
LOGICAL :: ON_VELOCITIES
*
K=0

DO ILIES = 1, NLIE

IF (ON_VELOCITIES) THEN
* link on velocities
IF (IPARTI /= O .AND. PLINKS == 1) THEN
* (potentially) asynchronous case : <cgamma> = <c> * <gamma>
IF (NPAS == 0) THEN

ALPH = 1.DO ! Au pas O, on ecrit les liaison en vitesse
! toujours sur (n+3/2) quelque soit la valeur

! ALPHA_LIAJ dans 1’input

ELSE
ALPH = ALPHA_LIAJ
ENDIF
DO I =1, NDL
K=K+1

! CONCERNED DOF
! CORRESPONDING NODE

IDOF = LPAIR(K)
NOD = DOF_NODE(IDOF)
IF (NPAS == 0) THEN

DTO = 0.DO
ELSE

DTO = DELTNO(NOD) ! OLD DT OF NODE
ENDIF

NDTN = LEVFAC_NODE(NOD)
DTN = DELMIN*MAXSUB / NDTN ! NEW DT OF NODE
GAMMAI = 0.5D0*(DTO + ALPH*DTN)
CGAMMA (K) = COEFL (K)*GAMMAI
END DO
ELSE
* normal case (synchronous) : <cgamma> = <c> * gamma
GAMMAI = 0.5D0*DTSUM
DO I =1, NDL
K=K+1
CGAMMA (K) = COEFL (K)*GAMMAI
END DO
ENDIF
ELSE
* link on accelerations
DO I =1, NDL
K=K+ 1
CGAMMA(K) = COEFL(K)
END DO
ENDIF
END DO

END SUBROUTINE COMPUTE_CGAMMA

A local value of a@ (ALPH) is computed, exactly like in subroutine FLIAIS as explained in Sec-
tion 3.2.5. Then, the value of ALPH is used to take into account the parametrization for any
velocity-based constraint (ON_VELOCITIES), in the case of potentially asynchronous constraints
with partitioning (PART).

34

3.4 The LINK DECO DEPL|VITE|ACCE directive

The code flowchart for the LINK DECO DEPL|VITE|ACCE directive (“decoupled links” model) is pre-
sented in Figure 3. Although not formally a coupled liaison or coupled link model, this directive
may be considered relevant here because the weak (decoupled) formulation of these particular links
is obtained by a direct solution of the corresponding constraints, as detailed in reference [12].

Directive LINK DECO DEPL|VITE|ACCE

COMPUTE_STEP — CALCUL

COMPUTE_STEP_PART SOLVE_AVD_DECO

D COMPUTE STEP

D CALFREE

Figure 3: Code flowchart for the LINK DECO DEPL|VITE|ACCE directive.

The solution is implemented in subroutine SOLVE_AVD _DECO, which is very similar to the
subroutine SOLVE_SINGLE_DVA described in the previous paragraph for the case of coupled links,
which is used when a constraints group happens to contain just one condition and can therefore be
solved analytically.

The main difference between SOLVE_AVD _DECO and SOLVE_SINGLE_DVA is that the latter
contains also code for a specific treatment in the case with domain decomposition (parallel solution
under MPI). This is not necessary in SOLVE_AVD_DECO because the general treatment of (formally)
coupled links in the MPI case is done in other parts of the code.

Note that in principle the optional velocity parametrization (LIAJ) should be taken into account
in all velocity-based decoupled links (LINK DECO) which use a direct solution (as opposed, for example,
to a penalty-based solution). At the moment of this writing, however, this is done only for the LINK
DECO VITE directive.

35

3.4.1 Subroutine SOLVE_AVD_DECO

The old and new relevant parts of the subroutine SOLVE_AVD_DECO are shown side-by-side to
highlight the changes:

01d code New code
SUBROUTINE SOLVE_AVD_DECO (XM, FI, V, FE, DFX, FDECO, POSP) SUBROUTINE SOLVE_AVD_DECO (XM, FI, V, FE, DFX, FDECO, POSP)
INCLUDE "CONTRO.INC" ! FOR NLIB (GLOBAL N. OF DOFS) INCLUDE "CONTRO.INC" ! FOR NLIB (GLOBAL N. OF DOFS)
. INCLUDE "COPT.INC" ! FOR ALPHA_LIAJ
REAL(8) :: COEF, VAL, DTSUM, AUX INCLUDE ’CSCONT.INC’ ! For IFLAG2
IF (NPAS == 0) THEN REAL(8) :: COEF, VAL, DTSUM, AUX, ALPH
DTSUM = DT2 P
ELSE IF (NPAS == 0) THEN
DTSUM = DT1 + DT2 ALPH = 1.DO ! Au pas O, on ecrit les liaisons en vitesse
ENDIF ! toujours sur (n+3/2) quelque soit la valeur
! de ALPHA_LIAJ dans 1’input
CASE (2) ! VITE ELSE
VAL = TIME_VALUE(IFONC,T+0.5D0*DT2)*COEF ! IMPOSED V"N+3/2 ALPH = ALPHA_LIAJ
FDECO(K) = 2.DO*XM(K)*(VAL-V(K))/DTSUM + FI(K) - FE(K) ENDIF
FE(K) = FE(X) + FDECO(K) *
* calcul de dtsum
CASE (2) ! VITE IF (IFLAG2 == 1) THEN ! On ne tient pas compte de OPTI LIAJ eventuel
VAL = TIME_VALUE(IFONC,T+0.5D0#DT2)*COEF ! IMPOSED V~"N+3/2 * cas de la collision et des chocs entre structures articulees composees
FDECO(K) = 2.DO*XM(K)*(VAL-V(K))/DTSUM + FI(K) - FE(K) * de corps rigides : il y a choc
* fe will be treated later in the case with sub-domains (MPI) DTSUM = 1.DO

ELSE ! Cas normal (il n’y a pas de collisions)
!fc on n’a pas besoin de tester LIAJRC, il suffit d’utiliser ALPHA_LIAJ
!fc la liaison porte sur les vitesses au pas (n+l+alpha/2):
tfc si OPTI LIAJ n’a pas ete specifie, par defaut ALPHA_LIAJ=1.0,
tfc ce qui correspond a ecrire les liaisons en vitesse a (n+3/2)
IF (NPAS == 0) THEN
DTSUM = ALPH*DT2
ELSE
DTSUM = DT1 + ALPH*DT2
ENDIF
ENDIF

CASE (2) ! VITE IMPOSED AS V-N+1+ALPH/2
VAL = TIME_VALUE(IFONC,T+0.5D0*ALPH*DT2)*COEF
FDECO(K) = 2.DO*XM(K)*(VAL-V(K))/DTSUM + FI(K) - FE(K)
FE(K) = FE(K) + FDECO(K)

CASE (2) ! VITE IMPOSED AS V-N+1+ALPH/2
VAL = TIME_VALUE(IFONC,T+0.5D0*ALPH*DT2) *COEF

FDECO(K) = 2.DO*XM(K)*(VAL-V(K))/DTSUM + FI(K) - FE(K)
* fe will be treated later in the case with sub-domains (MPI)

First, a local value of a (ALPH) is computed, exactly like in subroutine FLIAIS as explained in
Section 3.2.5. Then, the definition of DTSUM is modified by replacing DT2 with ALPH*DT2. This
causes velocity-based links to be expressed at the parametrized time ¢! + ozA?H /2.

Finally, in the case of an imposed velocity constraint (VITE) the time function is evaluated at the
parametrized time, again by replacing DT2 with ALPH*DT2.

36

4 Numerical examples

We present a series of numerical examples to illustrate and verify the developments detailed in the
previous Sections.

4.1 Bar impact tests

We start by re-considering the bar impact problem that had been studied in references [9,10] and
which had led to the first implementation of the LIAJ option in the early 2000’s. The tests performed
are summarized in Table 2.

Case Mesh Description Tan [ms] Steps CPU [s]
PINBO3 200 Q41L _ Original from 2002, LAGC, LIAT with LIAJ option 100 566 0.3
PINLO3 200 Q41L Idem PINBO3 but without LIAJ 100 558 0.3
PINB13 200 Q41L Idem PINBO3 but LINK COUP 100 566 0.2
PINL13 200 Q41L Idem PINLO3 but LINK COUP 100 558 0.2
PINB23 200 Q41L, 1 PMAT Idem PINBO3 but add fake PMAT 100 566 0.3
PINL23 200 Q41L, 1 PMAT Idem PINLO3 but add fake PMAT 100 558 0.3
PINB33 200 Q41L, 1 PMAT Idem PINBI13 but add fake PMAT and SPLT NONE 100 566 0.2
PINL33 200 Q41L, 1 PMAT Idem PINL13 but add fake PMAT and SPLT NONE 100 558 0.2
PINB43 200 Q41L Idem PINBO3 but remove OPTI PINS REB2 100 566 0.3
PINB53 200 Q41L, 1 PMAT Idem PINB33 but add LIAJ ALPH 0.0 100 566 0.2
PINBG63 200 Q41L Idem PINB13 but remove OPTI PINS REB2 100 566 0.3
PINB73 200 Q41L, 1 PMAT Idem PINB53 but LIAJ ALPH 0.05 100 558 0.2
PINB83 200 Q41L, 1 PMAT Idem PINB53 but LIAJ ALPH 0.10 100 557 0.3
PINB93 200 Q41L, 1 PMAT Idem PINB53 but LIAJ ALPH 0.50 100 556 0.3

Table 2: Bar impact tests.

4.1.1 Case PINBO03

This 2D problem consists of two identical elastic bars of dimensions 200 x 2 m, impacting each other
with opposite initial velocities of 500 m/s. Each bar is discretized by 100 square continuum elements
of type Q41L. The contact is modeled by pinballs (PINB) without hierarchic refinement, so that the
treatment of contact is relatively imprecise geometrically (but this is not an issue for the purpose of
this numerical test). The a posteriori rebound algorithm is adopted (OPTI PINS REB2). The velocity-
based constraints (here the pinball contacts) are expressed at n + 1 (i.e. by taking o = 0 to achieve
a full-step constraint), by means of the OPTI LIAJ keyword.

Figure 4 presents some results, namely the displacements of some characteristic points, the reac-
tions at the contacting extremities of the bars, the stresses at the bar mid-points and the energies.

The solution is identical to that published in references [9,10]. The contact forces are mutually
opposite as expected, but present large oscillations (intermittent contact). A small amount of energy
seems to be lost at the moment of the impact, although for o« = 0 the energy should be conserved.
However, this test is not very significant to check the energy conservation properties of the constraints
scheme, since contact occurs only on a small portion of the structure (the two bar tips).

4.1.2 Case PINLO03

This test is identical to PINB0O3 but without the LIAJ option, so that velocity-based constraints are
imposed at step n + 3/2 as per default in EPX (this corresponds to a = 1).

The result is, again, identical to that published in [9,10]. The contact force is much smoother
than in the previous solution and presents almost no oscillations (continuous contact), as it can be
seen in Figure 5.

It is difficult to say whether the energy conservation is worse or the same as in case PINBO03, for
the reasons mentioned in the previous paragraph.

37

10 >

T
b1

5. | /\

2

9

&
o | |

TIME [S]

0.0
PINBO3

-4- DX P4

L
5.0E-02

(a) Displacements

EUROPLEXUS
26 NOVEMBER 2022
DRAWING 1

0.

1.0E+11

5.0E+10 |

0

e

-1.08411 |

-1.5E411

Ll

TIME [S]

1 0.0
PINBO3
-1- FEX_P2

n
5.08-02 0.1

EUROPLEXUS
26 NOVEMBER 2022
DRAWING 2

(b) Reactions

1.5E410 . 9.E+11
sx [PA]

ENERGY [J]
7.E411 |
o
6.E+11 [
Y
5.E+11 |
4 a.Es1 [

-1.E411 |

1.0E410 [

5.0E409 [

-5.08409 [L

-1.08+10 [
-1.58+10 [

-2.08+10 [

-2.58+10 [

TIME [S] TIME [S]

-3.0E+10 -2.E+11

L
0.0 5.0E-02 0.1 0.0
PINBO3 EUROPLEXUS PINBO3 EUROPLEXUS
-1- sx_MID1 26 NOVEMBER 2022 -1- wror -2- WeIN 26 NOVEMBER 2022
DRAWING 3 DRAWING 4

|
5.08-02 0.1

-2- sX_MID2

(c) Stresses (d) Energies

Figure 4: Results of test PINBO3.

4.1.3 Case PINB13

This test is identical to PINBO3 (LIAJ) but uses the LINK COUP directive for the constraints. It is
meant to check the implementation of LIAJ for the modern constraints model (LINK) presented in this
report.

The results obtained (.ps file) are identical (diff command) to those with the LIAT constraints
model shown in Figure 4 and are not presented for brevity.

4.1.4 Case PINL13

This test is identical to PINLO3 (no LIAJ) but uses the LINK COUP directive for the constraints.
As expected, also in this case the results obtained (.ps file) are identical to those with the LIAI
constraints model shown in Figure 5 and are not presented for brevity.

4.1.5 Case PINB23

The two last tests show that the properties in terms of oscillations in the solution do not depend upon
the constraints model chosen (LIAI or LINK), but only on the time discretization of the velocity-based
constraints (LIAJ).

The tests run so far involved only one (contact) constraint. Therefore, when LINK is used, a direct
solution is employed internally by EPX, i.e. subroutine SOLVE_SINGLE_LIAISON, see Figure 2 and
Section 3.3.1.

However, it is desirable to check also the more general SOLVE_GROUP routine, which is activated

38

. T
o
1,
2.8410 [
1. |]
10. | N
/ ey

TIME [S] TIME [S]

L -3.E+: n
0.0 5.0E-02 0.1 0.0 5.08-02 0.1

PINLO3 EUROPLEXUS PINLO3 EUROPLEXUS
-1- Dx_P1 -2- DX_P2 -3- DX_P3 26 NOVEMBER 2022 -1- FEX_P2 26 NOVEMBER 2022
-4- DX P4 DRAWING 1 DRAWING 2

(a) Displacements (b) Reactions

1.5E410 . 9.E+11
sx [A] ENERGY [J]

1.0E410 [8.E+11 [

0.0 n“\m\/\/\/\hr\d/\/\km A 6-EHL |

1 et)

-1.08+10 [

-1.58+10 [

Y
o
-2.08+10 [3
1.E411 [
-2.58+10 [B 0.

TIME [S] TIME [S]

-3.0E+10

L |
0.0 5.0E-02 0.1 0.0 5.08-02 0.1

PINLO3 EUROPLEXUS PINLO3 EUROPLEXUS
-1- sx_MID1 -2- sX_MID2 26 NOVEMBER 2022 -1- wror -2- WeIN 26 NOVEMBER 2022
DRAWING 3 DRAWING 4

(c) Stresses (d) Energies

Figure 5: Results of test PINLO3.

when a group with several constraints has to be treated. To this end, we slightly modify the test
PINBO3 as follows. A fake material point (PMAT element) with a phantom (FANT) material is added
to the mesh, and it is blocked (BLOQ) in both directions, thus generating two extra constraints. This
element is not connected to the bar elements and therefore its presence should have no effect on the
numerical solution.

We first solve the modified problem with LIAT and LIAJ, like in case PINB03. As expected, the
results obtained (.ps file) are identical to those of test PINB03 constraints model shown in Figure 4
and are not presented for brevity.

4.1.6 Case PINL23

This test is identical to PINLO3 (LIAI) but we add the fake PMAT and block it like in the previous
example. As expected, the results obtained (.ps file) are identical to those of test PINL0O3 shown in
Figure 5 and are not presented for brevity.

4.1.7 Case PINB33

This test is identical to PINB13 (LINK COUP and LIAJ) but we add the fake PMAT and block it like
in the previous example. Note that in order to actually pass in subroutine SOLVE_GROUP, it is
necessary to add the optional keywords SPLT NONE to the LINK COUP directive. In this way, EPX does
not split the system of constraints into several groups but performs a monolithic solution (like for the
LIAI model).

39

As expected, the results obtained (. ps file) are identical to those of test PINBO3 shown in Figure 4,
and to those of test PINB23, and are not presented for brevity.

4.1.8 Case PINL33

This test is identical to PINL13 (LINK COUP without LIAJ) but we add the fake PMAT and block
it like in the previous example. We also add the optional keywords SPLT NONE to the LINK COUP
directive, like in the previous example.

As expected, the results obtained (. ps file) are identical to those of test PINL03 shown in Figure 5,
and to those of tests PINL13 and PINL23, and are not presented for brevity. These two latter tests
verify also the SOLVE_GROUP routine.

4.1.9 Case PINB43

This test is a repetition of case PINB03 but we remove the option PINS REB2 so that the default
rebound algorithm (a priori) is used. The scope is to check whether the strong oscillations in the
numerical solution of test PINB03 (see Figure 4) are at least partially due to the rebound algorithm,
besides the numerical scheme of the constraints.

A Dbit surprisingly, the results obtained are identical (.ps file) to those of test PINB03 and are not
shown for brevity. It seems therefore that the rebound algorithm has no effect on the solution in this
test problem.

4.1.10 Case PINB53

This test is identical to case PINB33 but we add ALPH 0.DO to the LIAJ option. Since, when LIAJ is
specified, the default value of a is 0.0 (for compatibility with the old syntax ans tests), we expect no
changes in the results. This is indeed the case and the solution is not presented for brevity.

4.1.11 Case PINB63

This test is a repetition of case PINB13 but we remove the option PINS REB2 so that the default
rebound algorithm (a priori) is used. The scope is to check whether the lack of influence of the rebound
algorithm on the numerical solution observed in test PINB43 with the LIAT model is confirmed also
for the LINK model.

Indeed, this is the case, since the solution is identical to that of case PINB13. This seems to
confirm that the rebound algorithm has no effect on the solution in this test problem.

4.1.12 Cases PINB73, PINB83, PINB93

We do a small parametric study to show the influence of the value of o on the solution. These three
tests use a = 0.05, = 0.10 and a = 0.50, respectively.

The results are summarized in Figure 6 together with those of case PINB53 (a = 0.0) and PINL33
(no LIAJ, corresponding to o = 1.0).

40

3.E410 . 4.E410 .
FEXT [N] FEXT [N)
3.E410 [1
2.8410 []
2.8+10 []
1.E410 [N]
| \ 12410 [l ~ 1

o. b B — o. [/‘9;24
-1.E4+10 [4 L " 1 3
-1.E+10 1 1 1 B

-2.E+10 3
-2.E+10 || 4
-3.E410 [3
TIME [S] TIME [S]
~3.E410 s -4.E+10 s
0.0 5.0E-02 0.1 0.0 5.08-02 0.1
PINL33 EUROPLEXUS PINB93 EUROPLEXUS
-1- FEX P2 -2- FEX P3 26 NOVEMBER 2022 -1- FEX_P2 -2- FEX P3 26 NOVEMBER 2022
DRAWING 2 DRAWING 2

(a) a = 1.00 PINL33 (b) o = 0.50 PINB93

1.E+11 1.E411

FEXT [N] FEXT [N]

s.eno0 | “] 5.5410 .]
} ‘ i
‘\um .

-5.E+10 | B -5.E+10

TIME [S] TIME [S]
-1.E411 s -1.E+11 s
0.0 5.0E-02 0.1 0.0 5.08-02 0.1
PINBS3 EUROPLEXUS PINBT3 EUROPLEXUS
-1- FEX P2 -2- FEX P3 26 NOVEMBER 2022 -1- FEX_P2 -2- FEX P3 26 NOVEMBER 2022
DRAWING 2 DRAWING 2

(c) a = 0.10 PINB83 (d) o = 0.01 PINB73

1.0E411 .
FEXT [N]
5.0E+10 4
0.0 72—
-5.0E+10 4
-1.0E+11 | ‘ 4
TIME [S]
-1.5E+11 L
0.0 5.0E-02 0.1
PINBS3 EUROPLEXUS
-1- FEX P2 -2- FEX_P3 26 NOVEMBER 2022
DRAWING 2

(e) a = 0.00 PINB53

Figure 6: Influence of the o parameter.

41

4.2 Simplified crash tests

We now consider a more representative test, the simplified crash of a vehicle component (a cross beam
structure) against a rigid wall. The cross beam is modeled by shell elements, see Figure 7(a), and a
linear elastic material is assumed.

The simulations performed are summarized in Table 3.

Case Mesh Description Thn [ms] Steps CPU [s]
CBEAO1 1536 Q4GS 8 T3GS «a =0 20 15278 61.2
CBEAO02 1536 Q4GS 8 T3GS a=1 20 15278 62.1

Table 3: Simplified crash tests.

4.2.1 Case CBEAO1

This test uses a = 0. The input file reads:

CBEAO1 COUR 6 ’N33-V’ VITE COMP 1 NOEU LECT 287 TERM
ECHO COUR 7 °N34-V’ VITE COMP 1 NOEU LECT 585 TERM
KFIL ’cbea.k’ COUR 8 ’N35-V’ VITE COMP 1 NOEU LECT 857 TERM
TRID LAGR TRAC 5 6 7 8 AXES 1. ’VELO (m/s)’
GEOM SCAL FACT 0.001 LIST 5 6 7 8 AXES 1. ’VELO (m/s)’

Q4GS she4 !

T3GS she3 COUR 9 ’N32-A’ ACCE COMP 1 NOEU LECT 1 TERM
TERM COUR 10 ’N33-A’ ACCE COMP 1 NOEU LECT 287 TERM
COMP GROU 1 ’vehi’ LECT TOUS TERM COUR 11 °N34-A’ ACCE COMP 1 NOEU LECT 585 TERM

COND XB GT -10.E-3 COUR 12 °N35-A’ ACCE COMP 1 NOEU LECT 857 TERM
MATE LINE RO 7800. YOUN 210E9 NU 0.28 TRAC 9 10 11 12 AXES 1. ’ACCE (m/s2)’
LECT PART 700 PART 126 TERM LIST 9 10 11 12 AXES 1. ’ACCE (m/s2)’
INIT VITE 1 -10. !
LECT vehi TERM COUR 13 ’WTOT’ WTOT
LIAI LAGC COUR 14 ’WCIN’ WCIN
BLOQ 123456 LECT PART 700 TERM COUR 15 ’WINT’> WINT
GLIS 1 SELF CMAI LECT PART 700 TERM DIRE COUR 16 ’WIMP’ WIMP
PESC LECT PART 126 TERM TRAC 13 14 15 16 AXES 1. ’ENER (J)’
OPTI NOTE LIST 13 14 15 16 AXES 1. ’ENER (J)’
CSTA 0.4 !
LOG 1000 COUR 17 ’WTOT’> WTOT
GLIS NORM ELEM COUR 18 ’WCIN’ WCIN
LIAJ ALPH 0. COUR 19 ’WINT’ WINT
* LIAJ ALPH 1. COUR 20 ’WIMP’ WIMP
REGI ’barr’ RMAS BARY WEXT RESU IRES TRAC 17 18 19 20 AXES 1. ’ENER (J)’
LECT PART 700 TERM LIST 17 18 19 20 AXES 1. ’ENER (J)’
’vehi’ RMAS BARY RESU WINT WEXT ECIN !
DMOY VMOY AMOY IMPU IRES COUR 21 ’vehi EEXT’ EEXT REGI 2
LECT vehi TERM COUR 22 ’vehi ECIN’ ECIN REGI 2
ECRI DEPL VITE ACCE PERF TFRE 0.0001 COUR 23 ’vehi EINT’ EINT REGI 2
POIN LECT NSET 32 NSET 33 NSET 34 NSET 35 TERM TRAC 21 22 23 AXES 1. ’ENER (J)’
NOEL LIST 21 22 23 AXES 1. ’ENER (J)’
FICH ALIT TFRE 0.0001 !
POIN LECT NSET 32 NSET 33 NSET 34 NSET 35 TERM COUR 24 ’vehi IMPU1’ IMPU COMP 1 REGI 2
FICH SPLI ALIC TFRE 0.001 COUR 25 ’vehi IMPU2’ IMPU COMP 2 REGI 2
! FICH PVTK TFRE 0.001 COUR 26 ’vehi IMPU3’ IMPU COMP 3 REGI 2
! GROU AUTO TRAC 24 25 26 AXES 1. ’momen. (kg m/s)’
! VARI DEPL ECRO VITE FAIL CONT FLIA DTST LIST 24 25 26 AXES 1. ’momen. (kg m/s)’
CALC TINI O TEND 0.02 !
SUIT COUR 27 ’vehi RESU1’ RESU COMP 1 REGI 2
Post COUR 28 ’vehi RESU2’ RESU COMP 2 REGI 2
ECHO COUR 29 ’vehi RESU3’ RESU COMP 3 REGI 2
RESU ALIC TEMP GARD PSCR TRAC 27 28 29 AXES 1. ’force (N)’
SORT GRAP AXTE 1. ’t [s]’ LIST 27 28 29 AXES 1. ’force (N)’
COUR 1 ’N32-D’ DEPL COMP 1 NOEU LECT 1 TERM !
COUR 2 ’N33-D’ DEPL COMP 1 NOEU LECT 287 TERM COUR 30 ’vehi IRES1’ IRES COMP 1 REGI 2
COUR 3 ’N34-D’ DEPL COMP 1 NOEU LECT 585 TERM COUR 31 ’vehi IRES2’ IRES COMP 2 REGI 2
COUR 4 ’N35-D’ DEPL COMP 1 NOEU LECT 857 TERM COUR 32 ’vehi IRES3’ IRES COMP 3 REGI 2
TRAC 1 2 3 4 AXES 1. ’DISP (m)’ TRAC 30 31 32 AXES 1. ’impul. (N s)’
LIST 1 2 3 4 AXES 1. ’DISP (m)’ LIST 30 31 32 AXES 1. ’impul. (N s)’
! !
COUR 5 ’N32-V’ VITE COMP 1 NOEU LECT 1 TERM FIN

Figure 7 shows the deformed model at various time instants. Figure 7 shows the same results
but with the mesh lines (element outlines) removed. The cross beam hits the rigid wall, deforms
elastically and then bounces back.

42

CBEAOL CBEAOL CBEAOL
TIME: 0.00000E+00 STEP: O TIME: 5.00105E-03 STEF: 3820 TIME: 1.00007E-02 STEP: 7639

(a) t=0.0 (b) t =5.0 ms (¢) t =10.0 ms
CBEAOL CBEAOL
TIME: 1.50000E-02 STEP: 11453 TIME: 2.0000SE-0z STEP: 15273

(d) t =15.0 ms (e) t =20.0 ms

Figure 7: Deformed geometry in test CBEAOL.

43

CHEAOL CBEAOL CBEAOL
TIME: 0.00000E+00 STEF: O TIME: 5.00105E-03 STEP: 3820 TIME: 1.00007E-02 STEP: 7639

(a) t=0.0 (b) t =5.0 ms (¢) ¢t =10.0 ms
CBERDL CBEAOL
TIME: 1.50000E-02 STEF: 1145% TIME: 2.00005E-02 STEF: 15278

(d) t =15.0 ms (e) t =20.0 ms

Figure 8: Deformed geometry in test CBEAO1 (without mesh lines).

44

4.2.2 Case CBEAO02

This test is similar to CBEA02 but uses a« = 1. The results in terms of deformed mesh are visually
very similar to those of case CBEAO1 and are not shown for brevity.

A comparison of the results in the two tests in terms of time curves is offered in Figures 9 and 10,
where the solution CBEAO1 is shown in red while the solution CBEA02 is shown in black.

5.0E-02

T T T 20 T
DISP (M) VELO (M/S)
s b
10. |
0.0 -
s L
o b
s
I i
o]
s b]
T [S] T [S]
-0.1 1 1 1 -20. 1 1 1
o ok ok T -0 o o Toke e Tob-az
CBER02 EUROPLEXUS CBEAOZ EUROPLEXUS
-1- N32-D -2- N33-D -3- N34-D 17 APRIL 2023 -1- N32-V -2- N33-v -3- N34-V 17 APRIL 2023
—4- N35-D -5- N32-D_01 —6- N33-D_01 DRAWING 1 —4- N35-V -5- N32-V_01 —6- N33-V_01 DRAWING 2
Mo o een ot e Ny or o e ot
(a) Displacements (b) Velocities
1.E406 T T T 350. T T T
ACCE (M/S2) ENER (J)
300. | -
s.zv0s || 250, | § J
200. | Mf
0. 150. [M/\/\/{
o W
.m0 | i o []
0.
T [S] T [S]
t.me0s . , , 5. , , ,
0.0 5.0E-03 1.0E-02 1.5E-0. 2.0E-02 0.0 5.0E-03 1.0E-02 1.5E-0: 2.0E-02
CBEAO2 EUROPLEXUS CBEAD2 EUROPLEXUS
-1- N32-A -2- N33-A -3- N34-A 17 APRIL 2023 —1- WTOT =2- WCIN =3- WINT 17 APRIL 2023
—4- N35-A -5- N32-A_01 —-6- N33-A_01 DRAWING 3 —4- WIMP -5- WTOT_01 —6- WCIN_01 DRAWING 4
o o s or 7 v o v
(c) Accelerations (d) Energies

Figure 9: Comparison of results of tests CBEAO1 and CBEAO02.

45

ENER (J)
300. [-
25
20, |]
200. |
> ’\A\\/\ N/f/J\’\“f\/\f/
3
1s0. [\/\//:
100. [W
s |]
0. 4
|
: :
0. | :
T [S]
-100. L L 1
0.0 5.0E-03 1.0E-02 1.5E-0: 2.0E-02
CBEAOZ EUROPLEXUS
-1- VEHI EEXT -2- VEHI ECIN =3- VEHI EINT 17 APRIL 2023
—-4- VEHI EEXT 01 —-5- VEHI ECIN 01 —6— VEHI EINT 01 DRAWING 5
(a) Vehicle energies
2.08408 . . .
FORCE (N)
nosmos ||]
vomeos [1
50000. L B
A
L
0.0 N A
T [S]
~50000. L 1 1
e sow T TR oo
caeaoz

-1- VEHI RESUL
-4~ VEHI RESU1 01

-2~ VEHI RESU2
~5- VEHI RESU2 01

EUROPLEXUS

-3- VEHI RESU3
-6~ VEHI RESU3 01

17 APRIL 2023
DRAWING 7

(¢) Vehicle forces

Figure 10: Further comparison of results of tests

46

40.

MOMEN. (KG M/S)

20. |

-10. [

T (8]

L
5.0E-03

™MPU2
-5- VEHI IMPU2 01

-4~ VEHI IMPU1 01

L
1.0E-02

L
1.5E-0;

2. 0E-02

-3- VEHI IMPU3

-6~ VEHI IMPU3_01

(b) Momenta

EUROPLEXUS
17 APRIL 2023
DRAWING 6

IMPUL. (N §)

s0. [

40. |

30. b

20. |

T [S]

L
0.0 5.0E-03
CBEAO2

~1- VEHI IRES1

-4~ VEHI IRES1 01

-2- VEHI IRES2
-5- VEHI IRES2 01

L
1.0E-02

L
1.58-02

-3~ VEHI IRES3
-6~ VEHI IRES3 01

(d) Vehicle impulses

CBEAO1 and CBEAO02.

2 0E-02

EUROPLEXUS

17 APRIL
DRAWING

2023

References

EUROPLEXUS User’s Manual, on-line version: http://europlexus.jrc.ec.europa.eu.
Cast3m Software: http://www-cast3m.cea.fr/.

M. Sebik, M. Popovic, K. Kleteckova. Generic vehicle model N1. JRC Technical Report 130165,
2022.

https://counterterrorism.jrc.ec.europa.eu/generic_vehicle_models.php.

M. Lepareux, B. Schwab, A. Hoffmann, P. Jamet, H. Bung. Un programme général pour 1’analyse
dynamique rapide — Cas des tuyauteries. Colloque: Tendances Actuelles en Calcul des Structures,
Bastia, 6-8 November, 1985.

F. Casadei. A Revision of the Liaisons Model in EUROPLEXUS for Domain Decomposition
Calculations - Second Edition. Technical Note N. 1.03.164, November 2003.
Pdf/2003/Link2/Link2.pdf

J.P. Halleux, F. Casadei. Spatial Time Step Partitioning in EUROPLEXUS. EUR Report 22464
EN, 2006.
Pdf/2006/Partition/Partition.pdf

H. Bung, F. Casadei, J.P. Halleux, M. Lepareux. PLEXIS-3C: a computer code for fast dynamic
problems in structures and fluids. 10th International Conference on Structural Mechanics in
Reactor Technology, Anaheim, U.S.A., August 14-18, 1989.

Pdf/1989/Smirt89_p3c/Smirt89_p3c.pdf

F. Casadei. A Hierarchic Pinball Method for Contact-Impact in Fast Transient Dynamics. VI
Congresso Nazionale della Societa Italiana di Matematica Applicata e Industriale (SIMAT 2002),
Chia (Cagliari), Italy, 27-31 May 2002.

Pdf/2002/Simai2002/Simai2002. pdf

F. Casadei. A General Impact-Contact Algorithm Based on Hierarchic Pinballs for the EURO-
PLEXUS Software System. Technical Note N. 1.03.176, December 2003.
Pdf/2003/Pinballs/Pinballs.pdf

R.C. Fetecau, J.E. Marsden, M. Ortiz and M. West. Non-smooth Lagrangian Mechanics and
Variational Collision Integrators. STAM J. Applied Dynamical Systems, vol. 2, No. 3, pp. 381-
416 (2003).

F. Casadei, G. Valsamos, M. Larcher, V. Faucher. Coupled, decoupled and MPI formulations of
the DEPL, VITE and ACCE constraints for imposed motions in EUROPLEXUS. JRC Technical
Report, PUBSY No. JRC117476, 2019.

Pdf/2018/DVA/Report/Front/Req JRC117476.pdf

47

Appendix I — Input files

All the input files used in the previous Sections are listed below.

cbeall.epx

TRAC 27 28 29 AXES 1. ’force (N)’

CBEAO1
ECHO
KFIL ’cbea.k’
TRID LAGR
GEOM SCAL FACT 0.001
Q4GS shed
T3GS she3
TERM
COMP GROU 1 ’vehi’ LECT TOUS TERM
COND XB GT -10.E-3
MATE LINE RO 7800. YOUN 210E9 NU 0.28
LECT PART 700 PART 126 TERM
INIT VITE 1 -10.
LECT vehi TERM
LIAI LAGC
BLOQ 123456 LECT PART 700 TERM
GLIS 1 SELF CMAI LECT PART 700 TERM DIRE
PESC LECT PART 126 TERM
OPTI NOTE
CSTA 0.4
LOG 1000
GLIS NORM ELEM
LIAJ ALPH 0.
* LIAJ ALPH 1.
REGI ’barr’ RMAS BARY WEXT RESU IRES
LECT PART 700 TERM
’vehi’ RMAS BARY RESU WINT WEXT ECIN
DMOY VMOY AMOY IMPU IRES
LECT vehi TERM
ECRI DEPL VITE ACCE PERF TFRE 0.0001

POIN LECT NSET 32 NSET 33 NSET 34 NSET 35 TERM

NOEL
FICH ALIT TFRE 0.0001

POIN LECT NSET 32 NSET 33 NSET 34 NSET 35 TERM

FICH SPLI ALIC TFRE 0.001
! FICH PVTK TFRE 0.001
! GROU AUTO

! VARI DEPL ECRO VITE FAIL CONT FLIA DTST

CALC TINI O TEND 0.02
SUIT

Post

ECHO

RESU ALIC TEMP GARD PSCR
SORT GRAP AXTE 1. ’t [s]’

COUR 1 ’N32-D’ DEPL COMP 1 NOEU LECT 1 TERM
COUR 2 ’N33-D’ DEPL COMP 1 NOEU LECT 287 TERM
COUR 3 ’N34-D’ DEPL COMP 1 NOEU LECT 585 TERM
COUR 4 °N35-D’ DEPL COMP 1 NOEU LECT 857 TERM
TRAC 1 2 3 4 AXES 1. °DISP (m)’

LIST 1 2 3 4 AXES 1. °DISP (m)’

!

COUR ’N32-V’ VITE COMP 1 NOEU LECT 1 TERM
COUR ’N33-V’ VITE COMP 1 NOEU LECT 287 TERM

5
6
7 ’N34-V’ VITE COMP 1 NOEU LECT 585 TERM
COUR 8 ’N35-V’ VITE COMP 1 NOEU LECT 857 TERM
TRAC 5 6 7 8 AXES 1. ’VELO (m/s)’
56 7 8 AXES 1. ’VELO (m/s)’

COUR 9 ’N32-A’ ACCE COMP 1 NOEU LECT 1 TERM
COUR 10 °N33-A’ ACCE COMP 1 NOEU LECT 287 TERM
COUR 11 °N34-A’ ACCE COMP 1 NOEU LECT 585 TERM
COUR 12 °N35-A° ACCE COMP 1 NOEU LECT 857 TERM
TRAC 9 10 11 12 AXES 1. ’ACCE (m/s2)’
LIST 9 10 11 12 AXES 1. ’ACCE (m/s2)’

COUR 13 ’WTOT’ WTOT
COUR 14 ’WCIN’ WCIN
COUR 15 ’WINT’ WINT
COUR 16 ’WIMP’ WIMP
TRAC 13 14 15 16 AXES 1. ’ENER (J)’
LIST 13 14 15 16 AXES 1. ’ENER (J)’

COUR 17 °WTOT’ WTOT
COUR 18 ’WCIN’ WCIN
COUR 19 °WINT’ WINT
COUR 20 ’WIMP’ WIMP
TRAC 17 18 19 20 AXES 1. ’ENER (J)’
LIST 17 18 19 20 AXES 1. ’ENER (J)’

COUR 21 ’vehi EEXT’ EEXT REGI 2
COUR 22 ’vehi ECIN’ ECIN REGI 2
COUR 23 ’vehi EINT’ EINT REGI 2
TRAC 21 22 23 AXES 1. ’ENER (J)’
LIST 21 22 23 AXES 1. ’ENER (J)’

COUR 24 ’vehi IMPU1’ IMPU COMP 1 REGI 2
COUR 25 ’vehi IMPU2’ IMPU COMP 2 REGI 2
COUR 26 ’vehi IMPU3’ IMPU COMP 3 REGI 2
TRAC 24 25 26 AXES 1. ’momen. (kg m/s)’
LIST 24 25 26 AXES 1. ’momen. (kg m/s)’

COUR 27 ’vehi RESU1’ RESU COMP 1 REGI 2
COUR 28 ’vehi RESU2’ RESU COMP 2 REGI 2
COUR 29 ’vehi RESU3’ RESU COMP 3 REGI 2

LIST 27 28 29 AXES 1. ’force (N)’
!

COUR 30 ’vehi IRES1’ IRES COMP 1 REGI 2
COUR 31 ’vehi IRES2’ IRES COMP 2 REGI 2
COUR 32 ’vehi IRES3’ IRES COMP 3 REGI 2
TRAC 30 31 32 AXES 1. ’impul. (N s)’
LIST 30 31 32 AXES 1. ’impul. (N s)’

1

FIN

cbealla.epx

CBEAO1A

ECHO

!CONV WIN

RESU SPLI ALIC ’cbeaOl1.ali’ GARD PSCR

COMP COUL ROUG LECT vehi TERM

GR50 LECT tous DIFF vehi TERM

SORT VISU NSTO 1

PLAY

CAME 1 EYE 1.07227E+00 4.11384E+00

! Q .09578E-01 4.57013E-02
VIEW -2.04808E-01 -9.43742E-01 -
RIGH -9.71808E-01 2.27713E-01 -
up -1.16803E-01 -2.39788E-01

i

FOV 2.48819E+01
INAVIGATION MODE: ROTATING CAMERA
ICENTER : 1.79499E-01 1.84774E-06 6.25
I\RSPHERE: 1.17813E+00
IRADIUS : 4.35907E+00
1ASPECT : 1.00000E+00
INEAR 3.18095E+00
IFAR : 6.71533E+00
SCEN GEOM NAVI FREE

FACE SBAC
LINE HEQU SSHA SFRE
LIMA ON
SLER CAM1 1 NFRA 1
FREQ 1

1.75673E+00
6.06711E-01
2.59625E-01
6.11218E-02
9.63773E-01

000E-01

7.86006E-01

TRAC OFFS FICH AVI NOCL NFTO 21 FPS 10 KFRE 10 COMP -1 REND

GOTR LOOP 19 OFFS FICH AVI CONT NOCL REND
GO

TRAC OFFS FICH AVI CONT REND

ENDP

FIN

cbea0lz.epx

CBEAO1Z
ECHO
CONV WIN
RESU SPLI ALIC ’cbea01.ali’ GARD PSCR
SORT VISU NSTO 1
FIN

cbea02.epx

CBEAO2
ECHO
KFIL ’cbea.k’
TRID LAGR
GEOM SCAL FACT 0.001
Q4GS she4
T3GS she3
TERM
COMP GROU 1 ’vehi’ LECT TOUS TERM
COND XB GT -10.E-3
MATE LINE RO 7800. YOUN 210E9 NU 0.28
LECT PART 700 PART 126 TERM
INIT VITE 1 -10.
LECT vehi TERM
LIAI LAGC
BLOQ 123456 LECT PART 700 TERM
GLIS 1 SELF CMAI LECT PART 700 TERM
PESC LECT PART 126 TERM
OPTI NOTE
CSTA 0.4
LOG 1000
GLIS NORM ELEM
* LIAJ ALPH 0.
LIAJ ALPH 1.
REGI ’barr’ RMAS BARY WEXT RESU IRES
LECT PART 700 TERM
’vehi’ RMAS BARY RESU WINT WEXT ECIN
DMOY VMOY AMOY IMPU IRES
LECT vehi TERM
ECRI DEPL VITE ACCE PERF TFRE 0.0001

DIRE

POIN LECT NSET 32 NSET 33 NSET 34 NSET 35 TERM

NOEL

48

SLER CAM1 1 NFRA 1

FREQ 1

TRAC OFFS FICH AVI NOCL NFTO 21 FPS 10 KFRE 10 COMP -1 REND
GOTR LOOP 19 OFFS FICH AVI CONT NOCL REND

FICH ALIT TFRE 0.0001
POIN LECT NSET 32 NSET 33 NSET 34 NSET 35 TERM
FICH SPLI ALIC TFRE 0.001

o
' FICH PVIK TFRE 0.001 TRAC OFFS FICH AVI CONT REND
! GROU AUTO ENDD
! VART DEPL ECRO VITE FAIL CONT FLIA DTST FIN
CALC TINI O TEND 0.02
SUIT
Post
ECHO
RESU ALIC TEMP GARD PSCR cbeal2c.epx
SORT GRAP AXTE 1. ’t [s]’
COUR 1 ’N32-D’ DEPL COMP 1 NOEU LECT 1 TERM
COUR 2 ’N33-D’ DEPL COMP 1 NOEU LECT 287 TERM ggigozc

RESU ALIC TEMP ’cbea02.alt’ GARD PSCR

SORT GRAP AXTE 1. ’t [s]’

COUR 1 °N32-D’ DEPL COMP 1 NOEU LECT 1 TERM
COUR 2 ’N33-D’ DEPL COMP 1 NOEU LECT 287 TERM
COUR 3 ’N34-D’ DEPL COMP 1 NOEU LECT 585 TERM

’N35-D’ DEPL COMP 1 NOEU LECT 857 TERM
2 3 4 AXES 1. ’DISP (m)’

1
2
COUR 3 ’N34-D’ DEPL COMP 1 NOEU LECT 585 TERM
4
1
12 3 4 AXES 1. ’DISP (m)’

’N32-V> VITE COMP 1 NOEU LECT 1 TERM ’ '
COUR 6 ’N33-V’ VITE COMP 1 NOEU LECT 287 TERM COUR 4 ’N35-D> DEPL COMP 1 NOEU LECT 857 TERM
COUR 7 ’N34-V’ VITE COMP 1 NOEU LECT 585 TERM RCOU 101 °N32-D’ FICH ’cbeaOl.pun’ RENA *N32-D_01

67 8 AXES 1. 'VELO (m/s)’ RCOU 103 *N34-D’ FICH *cbeaOl.pun’ RENA *N34-D_01
67 8 AXES 1. *VELO (n/s)’ RCOU 104 *N35-D’ FICH ’cbeaOl.pun’ RENA ’N35-D_01
) TRAC 1 2 3 4 101 102 103 104 AXES 1. ’DISP (m)’
COUR 9 ’N32-A° ACCE COMP 1 NOEU LECT 1 TERM COLO NOIR NOIR NOIR NOIR ROUG ROUG ROUG ROUG

COUR 10 °N33-A’ ACCE COMP 1 NOEU LECT 287 TERM
COUR 11 °N34-A° ACCE COMP 1 NOEU LECT 585 TERM

5
COUR 12 °N35-A° ACCE COMP 1 NOEU LECT 857 TERM 6 s s
TRAC 9 10 11 12 AXES 1. ’ACCE (m/s2)’ COUR ; N34-V’ VITE COMP 1 NOEU LECT 585 TERM

LIST 9 10 11 12 AXES 1. ’ACCE (m/s2)’ ’N35-V’ VITE COMP 1 NOEU LECT 857 TERM

' RCOU 105 °N32-V’ FICH ’cbeaOl.pun’ RENA ’N32-V_01’
éUUR 13 ’WTOT’ WTOT RCOU 106 °N33-V’ FICH ’cbeaOl.pun’ RENA ’N33-V_01’
COUR 14 °WCIN’ WCIN RCOU 107 °N34-V’ FICH ’cbeaOl.pun’ RENA ’N34-V_01’
COUR 15 °WINT’ WINT RCOU 108 ’N35-V’ FICH ’cbealOl.pun’ RENA ’N35-V_01’
COUR 16 WIMP’ WIMP TRAC 5 6 7 8 105 106 107 108 AXES 1. ’VELO (m/s)’
TRAC 13 14 15 16 AXES 1. ’ENER (J)’ COLO NOIR NOIR NOIR NOIR ROUG ROUG ROUG ROUG

LIST 13 14 15 16 AXES 1. ’ENER (J)’
| COUR 9 °N32-A’ ACCE COMP 1 NOEU LECT 1 TERM

éDUR 17 WTOT® WTOT COUR 10 °N33-A’ ACCE COMP 1 NOEU LECT 287 TERM

COUR 18 ’WCIN’ WCIN COUR 11 °N34-A’ ACCE COMP 1 NOEU LECT 585 TERM

COUR 19 °WINT’ WINT COUR 12 °N35-A’ ACCE COMP 1 NOEU LECT 857 TERM

COUR 20 °WIMP’ WIMP RCOU 109 ’N32-A’ FICH ’cbeaOl.pun’ RENA ’N32-A_01’
TRAC 17 18 19 20 AXES 1. ’ENER (J)’ RCOU 110 ’N33-A’ FICH ’cbealOl.pun’ RENA ’N33-A_01’
LIST 17 18 19 20 AXES 1. ’ENER (J)’ RCOU 111 °N34-A’ FICH ’cbeaOl.pun’ RENA ’N34-A_01’

| RCOU 112 ’N35-A’ FICH ’cbealOl.pun’ RENA ’N35-A_01’
TRAC 9 10 11 12 109 110 111 112 AXES 1. ’ACCE (m/s2)’
COLO NOIR NOIR NOIR NOIR ROUG ROUG ROUG ROUG

5
6
7
COUR 8 ’N35-V’ VITE COMP 1 NOEU LECT 857 TERM RCOU 102 ’N33-D’ FICH ’cbealOl.pun’ RENA ’N33-D_01
5
5

’N32-V’ VITE COMP 1 NOEU LECT 1 TERM
’N33-V’ VITE COMP 1 NOEU LECT 287 TERM

COUR 21 ’vehi EEXT’ EEXT REGI 2
COUR 22 ’vehi ECIN’ ECIN REGI 2
COUR 23 ’vehi EINT’ EINT REGI 2
TRAC 21 22 23 AXES 1. ’ENER (J)’ COUR 13 °WTQT> WIOT

LIST 21 22 23 AXES 1. ’ENER (J)° COUR 14 *WCIN’ WCIN

X COUR 15 *WINT’ WINT

COUR 24 ’vehi IMPU1’® IMPU COMP 1 REGI 2 COUR 16 °WIMP’® WIMP

GOUR 25 *vehi IMPU2’ IMPU COMP 2 RECT o RCOU 113 *WTOT’ FICH ’cbea0l.pun’ RENA *WTOT_O1’
GOUR 26 *vehi IMPU3’ IMPU COMP 3 RECI o RCOU 114 *WCIN’ FICH ’cbea0i.pun’ RENA ’WCIN_O1’
TRAC 24 25 26 AXES 1. 'momen. (kg m/s)’ RCOU 115 *WINT’ FICH ’cbeaOl.pun’ RENA *WINT_01’
LIST 24 25 26 AXES 1. ’momen. (kg m/e)’ RCOU 116 *WIMP’ FICH ’cbea0l.pun’ RENA *WIMP_O1’

’ TRAC 13 14 15 16 113 114 115 116 AXES 1. ’ENER (J)’
COUR 27 *vehi RESUL’ RESU COMP 1 REGI 2 COLO NOIR NOIR NOIR NOIR ROUG ROUG ROUG ROUG

COUR 28 ’vehi RESU2’ RESU COMP 2 REGI 2

COUR 29 ’vehi RESU3’ RESU COMP 3 REGI 2 Jvehi .
TRAC 27 28 29 AXES 1. *force (N)’ COUR 22 “vehi ECIN’ ECIN REGI 2

LIST 27 28 29 AXES 1. ’force (N)’ COUR 23 ’vehi EINT’ EINT REGI 2
X RCOU 121 ’vehi EEXT’ FICH ’cbea0li.pun’ RENA ’vehi EEXT_01’
: RCOU 122 ’vehi ECIN’ FICH ’cbea0li.pun’ RENA ’vehi ECIN_01’

COUR 21 ’vehi EEXT’ EEXT REGI 2

COUR 30 ’vehi IRES1’ IRES COMP 1 REGI 2 , I s , s , N R
COUR 31 ’vehi IRES2’ IRES COMP 2 REGI 2 RCOU 123 ’vehi EINT’ FICH cbea01.€un RENA’ vehi EINT_O1
COUR. 32 ’vehi IRES3’ IRES COMP 3 REGI 2 TRAC 21 22 23 121 122 123 AXES 1. ’ENER (J)

TRAC 30 31 32 AXES 1. ’impul. (N s)’ COLO NOIR NOIR NOIR ROUG ROUG ROUG

LIST 30 31 32 AXES 1. ’impul. (N s)’ .
| COUR 24 ’vehi IMPU1’ IMPU COMP 1 REGI 2

COUR 25 ’vehi IMPU2’ IMPU COMP 2 REGI 2
COUR 26 ’vehi IMPU3’ IMPU COMP 3 REGI 2

RCOU 124 ’vehi IMPU1’ FICH ’cbea0l.pun’ RENA ’vehi IMPU1_01’
RCOU 125 ’vehi IMPU2’ FICH ’cbeall.pun’ RENA ’vehi IMPU2_01’
cbeaO2a.epx RCOU 126 ’vehi IMPU3’ FICH ’cbea0l.pun’ RENA ’vehi IMPU3_01’
TRAC 24 25 26 124 125 126 AXES 1. ’momen. (kg m/s)’

COLO NOIR NOIR NOIR ROUG ROUG ROUG

CBEAO2A

ECHO

!CONV WIN

RESU SPLI ALIC ’cbea02.ali’ GARD PSCR

COMP COUL ROUG LECT vehi TERM

GR50 LECT tous DIFF vehi TERM

SORT VISU NSTO 1

PLAY

CAME 1 EYE 1.07227E+00 4.11384E+00 1.75673E+00

! Q .09578E-01 4.57013E-02 6.06711E-01 7.86006E-01
VIEW -2.04808E-01 -9.43742E-01 -2.59625E-01
RIGH -9.71808E-01 2.27713E-01 -6.11218E-02
UP -1.16803E-01 -2.39788E-01 9.63773E-01
FOV 2.48819E+01

!NAVIGATION MODE: ROTATING CAMERA

COUR 27 ’vehi RESU1’ RESU COMP 1 REGI 2

COUR 28 ’vehi RESU2’ RESU COMP 2 REGI 2

COUR 29 ’vehi RESU3’ RESU COMP 3 REGI 2

RCOU 127 ’vehi RESU1’ FICH ’cbeall.pun’ RENA ’vehi RESU1_01’
RCOU 128 ’vehi RESU2’ FICH ’cbeaOl.pun’ RENA ’vehi RESU2_01’
RCOU 129 ’vehi RESU3’ FICH ’cbeaOl.pun’ RENA ’vehi RESU3_01’
TRAC 27 28 29 127 128 129 AXES 1. ’force (N)’

COLO NOIR NOIR NOIR ROUG ROUG ROUG

-

COUR 30 ’vehi IRES1’ IRES COMP 1 REGI 2
COUR 31 ’vehi IRES2’ IRES COMP 2 REGI 2
COUR 32 ’vehi IRES3’ IRES COMP 3 REGI 2
RCOU 130 ’vehi IRES1’ FICH ’cbeall.pun’ RENA ’vehi IRES1_01’
RCOU 131 ’vehi IRES2’ FICH ’cbeall.pun’ RENA ’vehi IRES2_01’

ICENTER : 1.79499E-01 1.84774E-06 6.25000E-01
IRSPHERE: 1. 17813E400 RCOU 132 ’vehi IRES3’ FICH ’cbeaOl.pun’ RENA ’vehi IRES3_01
IRADTUS . 4. 35907E+00 TRAC 30 31 32 130 131 132 AXES 1. ’impul. (N s)’
VASPECT . 1.00000E+00 ?DLU NOIR NOIR NOIR ROUG ROUG ROUG
INEAR 3.18095E+00 _—
IFAR 6.71533E+00
SCEN GEOM NAVI FREE
FACE SBAC
LINE HEOU SSHA SFRE
LIMA ON cbea02zepx

49

CBEA0O2Z
ECHO
CONV WIN
RESU SPLI ALIC ’cbea02.ali’ GARD PSCR
SORT VISU NSTO 1
FIN

pinb03.dgibi

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 03’;
opti dime 2 elem qua4;

*

p5=-101 -1;

p6=102 -1;

*

t01=0.001;

*

cl=pl d 100 p2;

c2=p3 d 100 p4;

strul=cl TRAN 1 (0 2);
stru2=c2 TRAN 1 (0 2);
stru = strul et stru2;
elim tol (stru et p5 et p6);
*

pinl = stru elem cont p2;
pin2 = stru elem cont p3;
pin = pinl et pin2;

midl = stru elem cont p5;
mid2 = stru elem cont p6;
*

Xp = stru poin droi pl p4 tol;
xpln = pxordpoi xp pi;

*

mesh = stru et xpln;

*

tass mesh;

*

opti sauv form ’pinb03.msh’;
sauv form mesh;

*

opti trac psc;

trac mesh;

trac qual pin;

list pin;

fin;

pinb03.epx

RESU ALIC TEMP GARD PSCR

SORT GRAP

AXTE 1.0 ’Time [s]’

COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM
COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM

COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WTOT
COUR 12 ’wcin’ WCIN
COUR 13 ’wint’ WINT
COUR 14 ’wext’ WEXT
COUR 15 ’bila’ BILA

trac 1 2 3 4 axes 1.0 *DISPL. [M]’ YZER
trac 5 6 axes 1.0 ’FEXT [N]’
COLO ROUG VERT
trac 7 8 axes 1.0 ’SX [PA]’ YZER
TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
COLO NOIR ROUG VERT TURQ
TRAC 15 AXES 1.0 ’Balance [%]’ YZER
TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
XMIN 0.0 XMAX 5.E-3 NX 10
COLO NOIR ROUG VERT TURQ

QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOL!
DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOL!
VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOL!
VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOL!

MmEEm
[]

FIN

pinb13.dgibi

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 03’;
opti dime 2 elem qua4;

*

p1=-201 -1;

p2=-1 -1;

p6=102 -1;
*

t01=0.001;
*

cl=p1l d 100 p2;

PINBO3

*

ECHO

*CONV win

*

CAST MESH

*

LAGR CPLA LAGC

*

*opti dump

*

GEOM Q41L stru TERM

COMP EPAI 1. LECT stru TERM

COUL VERT LECT stru TERM

MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
TRAC 1 2.E11 1.DO
LECT stru TERM

opti pins reb2
LIAI PINB BODY LECT pinl TERM
BODY LECT pin2 TERM

INIT VITE 1 500 LECT strul TERM
VITE 1 -500 LECT stru2 TERM

ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3

fich tplo desc ’PINBO3’ freq 1
poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term
fich xplo desc ’PINBO3’ tfre 10.e-3
poin lect xpln term
fich alic temp FREQ 1
poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term
*
OPTI PAS AUTO NOTE STEP IO
csta 0.5E0
log 1
liaj
*
CALCUL TINI O. TEND 100.E-3

SUIT
Post-treatment
ECHO

c2=p3 d 100 p4;

strul=c1 TRAN 1 (0 2);
stru2=c2 TRAN 1 (0 2);

stru = strul et stru2;

elim tol (stru et p5 et p6);
*

pinl = stru elem cont p2;
pin2 = stru elem cont p3;
pin = pinl et pin2;

midl = stru elem cont p5;
mid2 = stru elem cont p6;

*

xp = stru poin droi pl p4 tol;
xpln = pxordpoi xp pi;

*

mesh = stru et xpln;

*

tass mesh;

*

opti sauv form ’pinbi3.msh’;
sauv form mesh;

*

opti trac psc;

trac mesh;

trac qual pin;

list pin;

fin;

pinb13.epx

PINB13

*

ECHO

*CONV win

*

CAST MESH

*

LAGR CPLA

*

*opti dump

*

GEOM Q41L stru TERM

COMP EPAT 1. LECT stru TERM

COUL VERT LECT stru TERM

MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11

TRAC 1 2.E11 1.DO

20

LECT stru TERM

mesh = stru et xpln et pm;

*

* tass mesh;
opti pins reb2 *
LINK COUP opti sauv form ’pinb23.msh’;
PINB BODY LECT pinl TERM sauv form mesh;
BODY LECT pin2 TERM *
* opti trac psc;
INIT VITE 1 500 LECT strul TERM trac mesh;
VITE 1 -500 LECT stru2 TERM trac qual pin;
* list pin;
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3 fin;
fich alic temp FREQ 1
poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term p|nb23epx
*
OPTI PAS AUTO NOTE STEP IO
csta 0.5E0 PINB23
log 1
liaj ECHO
LNKS STAT Loomv win
*
CALCUL TINI 0. TEND 100.E-3 CAST MESH
SUIT LAGR CPLA LAGC
Post-treatment * .
ECHO *opti dump
*
*
RESU ALIC TEMP GARD PSCR GEOM Q41L stru PMAT pm TERM

*

SORT
*

AXTE

. MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
COUR 1 ’dx_pi’ DEPL COMP 1 NOEU LECT pl TERM TRAC 1 2.E11 1.DO

COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM LECT stru TERM

COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM FANT 0.1 LECT pm TERM

COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM o

COUR 6 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM opti pins reb2)

COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM LIAT PINB BODY LECT pinl TERM

COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT mid1l TERM BODY LECT pin2 TERM

COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM BLOQ 12 LECT pm TERM

COUR 11 ’wtot’ WTOT *

COUR 12 ’wein’ WCIN INIT VITE 1 500 LECT strul TERM

COUR 13 ’wint’ WINT VITE 1 -500 LECT stru2 TERM

COUR 14 ’wext’ WEXT *

COUR 15 ’bila’ BILA ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
* fich tplo desc ’PINB23’ freq 1

trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER poin lect pl p2 p3 p4 term
trac 5 6 axes 1.0 ’FEXT [N]’ elem lect pin midl mid2 term
COLO ROUG VERT fich xplo desc ’PINB23’ tfre 10.e-3

trac 7 8 axes 1.0 ’SX [PA]’ YZER)) poin lect xpln term

TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER fich alic temp FREQ 1

COLO NOIR ROUG VERT TURQ poin lect pl p2 p3 p4 term
TRAC 15 AXES 1.0 ’Balance [%]’ YZER elem lect pin midl mid2 term
TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER *

GRAP

1.0 ’Time [s]’

XMIN 0.0 XMAX 5.E-3 NX 10

COMP EPAI 1. LECT stru TERM

COUL

0.5 LECT pm TERM
VERT LECT stru TERM
ROUG LECT pm TERM

OPTI PAS AUTO NOTE STEP IO
csta 0.5E0

COLO NOIR ROUG VERT TURQ
% log 1
QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOLE 5.E-3 liaj
DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOLE 5.E-3 *
VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOLE 5.E-3 CALCUL TINI 0. TEND 100.E-3
VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOLE 5.E-3 SUTT
FIN Post-treatment
ECHO
*
. . RESU ALIC TEMP GARD PSCR
pinb23.dgibi *
SORT GRAP
*
opti donn ’pxordpoi.proc’; AXTE 1.0 ’Time [s]’
* *
*opti titr ’PINB - 03’; COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM
opti dime 2 elem qua4; COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
* COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM
p1=-201 -1; COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM
p2=-1 -1; COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
p6=102 -1; COUR 11 ’wtot’ WTOT
* COUR 12 ’wcin’ WCIN
t01=0.001; COUR 13 ’wint’ WINT
* COUR 14 ’wext’ WEXT
cl=p1 d 100 p2; COUR 15 ’bila’ BILA
c2=p3 d 100 p4; *
strul=cl TRAN 1 (0 2); trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER
stru2=c2 TRAN 1 (0 2); trac 5 6 axes 1.0 ’FEXT [N]’
stru = strul et stru2; COLO ROUG VERT
elim tol (stru et p5 et p6); trac 7 8 axes 1.0 ’SX [PA]’ YZER
* TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
pinl = stru elem cont p2; COLO NOIR ROUG VERT TURQ
pin2 = stru elem cont p3; TRAC 15 AXES 1.0 ’Balance [%]’ YZER
pin = pinl et pin2; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
midl = stru elem cont p5; XMIN 0.0 XMAX 5.E-3 NX 10
mid2 = stru elem cont p6; COLO NOIR ROUG VERT TURQ
* *
xp = stru poin droi pl p4 tol; QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOLE 5.E-3
xpln = pxordpoi xp pi; DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOLE 5.E-3
* VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOLE 5.E-3
p0 =0 0; VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOLE 5.E-3
pm = manu poil pO;
* FIN

o1

SORT GRAP

pinb33.dgibi *

AXTE 1.0 ’Time [s]’

opti domn ’pxordpoi.proc’; COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM

. COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM

xopti titr ’PINB - 037; COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM

opti dime 2 elem quad; COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM

* COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM

pl=-201 -1; COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM

COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WTOT
COUR 12 ’wcin’ WCIN

p6=102 -1; COUR 13 ’wint’ WINT

* COUR 14 ’wext’ WEXT

t01=0.001; COUR 15 ’bila’ BILA

* *

cl=pl d 100 p2; trac 1 2 3 4 axes 1.0 *DISPL. [M]’ YZER

c2=p3 d 100 p4; trac 5 6 axes 1.0 ’FEXT [N]’

strul=cl TRAN 1 (0 2); COLO ROUG VERT

stru2=c2 TRAN 1 (0 2); trac 7 8 axes 1.0 ’SX [PA]’ YZER

stru = strul et stru2; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

elim tol (stru et p5 et p6); COLO NOIR ROUG VERT TURQ

* TRAC 15 AXES 1.0 ’Balance [%]’ YZER

pinl = stru elem cont p2; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

pin2 = stru elem cont p3; XMIN 0.0 XMAX 5.E-3 NX 10
pin = pinl et pin2; COLO NOIR ROUG VERT TURQ

midl = stru elem cont p5; *

mid2 = stru elem cont p6; QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOLE 5.E-3
* DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOLE 5.E-3
xp = stru poin droi pl p4 tol; VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOLE 5.E-3
xpln = pxordpoi xp pl; VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOLE 5.E-3
*

p0 =0 0; FIN

pm = manu poil pO;

* . ..

mesh = stru et xpln et pm; plnb43-dg|b|

*
tass mesh;

*

opti sauv form ’pinb33.msh’;
sauv form mesh;

*

opti trac psc;

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 03’;
opti dime 2 elem qua4;

*

pl1=-201 -1;

trac mesh;
trac qual pin;
list pin;
fin;
p6=102 -1;
*
i t01=0.001;
pinb33.epx .
cl=pl d 100 p2;
c2=p3 d 100 p4;
PINB33 strui=ci TRAN 1 (0 2);
* stru2=c2 TRAN 1 (0 2);
ECHO stru = strul et stru2;
*CONV win elim tol (stru et p5 et p6);
* *
CAST MESH pinl = stru elem cont p2;
* pin2 = stru elem cont p3;
LAGR CPLA pin = pinl et pin2;
* midl = stru elem cont p5;
*opti dump mid2 = stru elem cont p6;
* *
GEOM Q41L stru PMAT pm TERM xp = stru poin droi pl p4 tol;
COMP EPAI 1. LECT stru TERM xpln = pxordpoi xp pi;
0.5 LECT pm TERM *
COUL VERT LECT stru TERM mesh = stru et xpln;
ROUG LECT pm TERM *
MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11 tass mesh;
TRAC 1 2.E11 1.DO *
LECT stru TERM opti sauv form ’pinb43.msh’;
FANT 0.1 LECT pm TERM sauv form mesh;
* *
opti pins reb2 opti trac psc;
LINK COUP SPLT NONE trac mesh;
PINB BODY LECT pinil TERM trac qual pin;
BODY LECT pin2 TERM list pin;
BLOQ 12 LECT pm TERM fin;
*
INIT VITE 1 500 LECT strul TERM .
VITE 1 -500 LECT stru2 TERM p|nb43.epx
*
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3 PINB43
fich alic temp FREQ 1 *
poin lect pl p2 p3 p4 term ECHO
elem lect pin midl mid2 term *CONV win
* *
OPTI PAS AUTO NOTE STEP IO CAST MESH
csta 0.5E0 *
log 1 LAGR CPLA LAGC
liaj *
LNKS STAT *opti dump
* *
CALCUL TINI O. TEND 100.E-3 GEOM Q41L stru TERM
COMP EPAT 1. LECT stru TERM
SUIT COUL VERT LECT stru TERM
Post-treatment MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
ECHO TRAC 1 2.E11 1.DO
* LECT stru TERM
RESU ALIC TEMP GARD PSCR *
* LIAI PINB BODY LECT pinl TERM

52

tass mesh;

BODY LECT pin2 TERM *
* opti sauv form ’pinb53.msh’;
INIT VITE 1 500 LECT strul TERM sauv form mesh;
VITE 1 -500 LECT stru2 TERM *
* opti trac psc;
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3 trac mesh;
fich tplo desc ’PINB43’ freq 1 trac qual pin;
poin lect pl p2 p3 p4 term list pin;
elem lect pin midl mid2 term fin;

fich xplo desc ’PINB43’ tfre 10.e-3
poin lect xpln term
fich alic temp FREQ 1

poin lect pl p2 p3 p4 term plnb53.epx
elem lect pin midl mid2 term
*
OPTI PAS AUTO NOTE STEP I0 PINB53
csta 0.5E0 *
log 1 ECHO
liaj *CONV win
* *
CALCUL TINI O. TEND 100.E-3 CAST MESH
*
SUIT LAGR CPLA
Post-treatment *
ECHO *opti dump
* *
RESU ALIC TEMP GARD PSCR GEOM Q41L stru PMAT pm TERM
M COMP EPAI 1. LECT stru TERM
SORT GRAP 0.5 LECT pm TERM
* COUL VERT LECT stru TERM
AXTE 1.0 ’Time [s]’ ROUG LECT pm TERM
M MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pi TERM TRAC 1 2.E11 1.DO

LECT stru TERM

’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
FANT 0.1 LECT pm TERM

1

2

3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM

5

6

7

’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM EII’;; gég; ;:Ei NONE

’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM PINB BODY LECT pini TERM
pin:

COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM L
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM BODY LECT pin2 TERM

COUR 11 ’wtot’ WIOT BLOQ 12 LECT pm TERM

COUR 12 ‘wcin’ WCIN *

COUR 13 ’wint’ WINT INIT VITE 1 500 LECT strul TERM

COUR 14 ’wext’ WEXT VITE 1 -500 LECT stru2 TERM

COUR 15 ’bila’ BILA *

N ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER fich alic temp FREQ 1

poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term

trac 5 6 axes 1.0 ’FEXT [N]’
COLO ROUG VERT

trac 7 8 axes 1.0 ’SX [PA]’ YZER *
TRAC 11 12 13 14 AXES 1.0 ’Enmergy [J]’ YZER OPTI PAS AUTO NOTE STEP I0
COLO NOIR ROUG VERT TURQ csta 0.5E0
TRAC 15 AXES 1.0 ’Balance [%]’ YZER log 1
TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER liaj alph 0.DO
XMIN 0.0 XMAX 5.E-3 NX 10 LNKS STAT
COLO NOIR ROUG VERT TURQ *
. CALCUL TINI 0. TEND 100.E-3
QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOLE 5.E-3
DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOLE 5.E-3 SUIT
VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOLE 5.E-3 Post-treatment
VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOLE 5.E-3 ECHU
FIN RESU ALIC TEMP GARD PSCR
*
SORT GRAP
. - *
pmb53-dg|b| AXTE 1.0 ’Time [s]’
*
opti donn ’pxordpoi.proc’; COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM
* COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
*opti titr ’PINB - 03’; COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM
opti dime 2 elem qua4; COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM
* COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM
pl=-201 -1; COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
p2=-1 -1; COUR 7 ’sx_midl’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WIOT
COUR 12 ‘wcin’ WCIN
p6=102 -1; COUR 13 ’wint’ WINT
* COUR 14 ’wext’ WEXT
t01=0.001; COUR 15 ’bila’ BILA
* *
cil=pl d 100 p2; trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER
c2=p3 d 100 p4; trac 5 6 axes 1.0 ’FEXT [N]’
strui=ci TRAN 1 (0 2); COLO ROUG VERT
stru2=c2 TRAN 1 (0 2); trac 7 8 axes 1.0 ’SX [PA]’ YZER
stru = strul et stru2; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
elim tol (stru et p5 et p6); COLO NOIR ROUG VERT TURQ
* TRAC 15 AXES 1.0 ’Balance [%]’ YZER
pinl = stru elem cont p2; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
pin2 = stru elem cont p3; XMIN 0.0 XMAX 5.E-3 NX 10
pin = pinl et pin2; COLO NOIR ROUG VERT TURQ
midl = stru elem cont p5; *
mid2 = stru elem cont p6; QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOLE 5.E-3
* DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOLE 5.E-3
xp = stru poin droi pl p4 tol; VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOLE 5.E-3
VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOLE 5.E-3

xpln = pxordpoi xp pi;
*

p0 =0 0; FIN
pm = manu poil pO;

*

mesh = stru et xpln et pm;

: pinb63.dgibi

93

COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
opti donn ’pxordpoi.proc’; COUR 11 ’wtot’ WIOT
* COUR 12 ’wcin’ WCIN
%opti titr ’PINB - 03’; COUR 13 ’wint’ WINT
opti dime 2 elem qua4; COUR 14 ’wext’ WEXT
* COUR 15 ’bila’ BILA
p1=-201 -1; *
. trac 1 2 3 4 axes 1.0 *DISPL. [M]’ YZER
trac 5 6 axes 1.0 ’FEXT [N]’
COLO ROUG VERT
trac 7 8 axes 1.0 ’SX [PA]’ YZER

p6=102 -1; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

* COLO NOIR ROUG VERT TURQ

£01=0.001; TRAC 15 AXES 1.0 ’Balance [%]’ YZER

. TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

ci=pl d 100 p2; XMIN 0.0 XMAX 5.E-3 NX 10
c2=p3 d 100 p4; COLO NOIR ROUG VERT TURQ

strul=cl TRAN 1 (0 2); *

stru2=c2 TRAN 1 (0 2); QUAL DEPL COMP 1 LECT p2 TERM REFE -9.67354E+0 TOLE 5.E-3
stru = strul et stru2; DEPL COMP 1 LECT p3 TERM REFE 9.67354E+0 TOLE 5.E-3
elim tol (stru et p5 et p6); VITE COMP 1 LECT p2 TERM REFE -5.75553E+2 TOLE 5.E-3
« VITE COMP 1 LECT p3 TERM REFE 5.75553E+2 TOLE 5.E-3

pinl = stru elem cont p2;
pin2 = stru elem cont p3;
pin = pinl et pin2;

midl = stru elem cont p5; plnb73dg|b|

mid2 = stru elem cont p6;

FIN

*
xp = stru poin droi pl p4 tol;
xpln = pxordpoi xp pi;

*

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 03’;
opti dime 2 elem qua4;

mesh = stru et xpln; «

*
tass mesh;

*

opti sauv form ’pinb63.msh’;
sauv form mesh;

*

pi1=-201 -1;

opti trac psc; €6=102 o
trac mesh; t01=0.001;
trac qual pin; *

list pin; = .
P cil=p1l d 100 p2;

c2=p3 d 100 p4;
strui=c1 TRAN 1 (0 2);
) stru2=c2 TRAN 1 (0 2);
p|nb63_epx stru = strul et stru2;
elim tol (stru et p5 et p6);
*

PINB63 pinl = stru elem cont p2;
* pin2 = stru elem cont p3;
ECHO pin = pinl et pin2;
*CONV win midl = stru elem cont p5;
* mid2 = stru elem cont p6;
CAST MESH *
* xp = stru poin droi pl p4 tol;
LAGR CPLA xpln = pxordpoi xp pi;
* *
*opti dump po = 0 0;
* pm = manu poil pO;
GEOM Q41L stru TERM *
COMP EPAT 1. LECT stru TERM mesh = stru et xpln et pm;
COUL VERT LECT stru TERM *
MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11 tass mesh;
TRAC 1 2.E11 1.DO *
LECT stru TERM opti sauv form ’pinb73.msh’;
* sauv form mesh;
LINK COUP *
PINB BODY LECT pini TERM opti trac psc;
BODY LECT pin2 TERM trac mesh;
* trac qual pin;
INIT VITE 1 500 LECT strul TERM 1list pin;
VITE 1 -500 LECT stru2 TERM fin;
*
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3 .
fich alic temp FREQ 1 p|nb73_epx
poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term PINB73
* *
OPTI PAS AUTO NOTE STEP IO ECHO
csta 0.5E0 *CONV win
log 1 *
liaj CAST MESH
LNKS STAT *
* LAGR CPLA
CALCUL TINI O. TEND 100.E-3 *
*opti dump
SUIT *
Post-treatment GEOM Q41L stru PMAT pm TERM
ECHO COMP EPAT 1. LECT stru TERM
* 0.5 LECT pm TERM
RESU ALIC TEMP GARD PSCR COUL VERT LECT stru TERM
* ROUG LECT pm TERM
SORT GRAP MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
* TRAC 1 2.E11 1.DO
AXTE 1.0 ’Time [s]’ LECT stru TERM
* FANT 0.1 LECT pm TERM
COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT p1 TERM *
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM opti pins reb2
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM LINK COUP SPLT NONE
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM PINB BODY LECT pinl TERM
COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM BODY LECT pin2 TERM
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM BLOQ 12 LECT pm TERM

54

*
INIT VITE 1 500 LECT strul TERM
VITE 1 -500 LECT stru2 TERM
*
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
fich alic temp FREQ 1
poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term
*
OPTI PAS AUTO NOTE STEP IO
csta 0.5E0
log 1
liaj alph 0.05D0
LNKS STAT
*
CALCUL TINI O. TEND 100.E-3

opti trac psc;
trac mesh;
trac qual pin;
list pin;

fin;

pinb83.epx

PINB83

*

ECHO
*CONV win
*

CAST MESH
*

LAGR CPLA
*

*opti dump
*

GEOM Q41L
COMP EPAT

MATE

opti
LINK

INIT

ECRI

COUL

VM23

FANT
pins
coupP
PINB
BLOQ

VITE
VITE

DEPL
fich

stru PMAT pm TERM
1. LECT stru TERM
0.5 LECT pm TERM
VERT LECT stru TERM
ROUG LECT pm TERM
RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
TRAC 1 2.E11 1.DO
LECT stru TERM
0.1 LECT pm TERM

reb2

SPLT NONE

BODY LECT pini TERM
BODY LECT pin2 TERM
12 LECT pm TERM

1 500 LECT strul TERM
1 -500 LECT stru2 TERM

VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
alic temp FREQ 1
poin lect pl p2 p3 p4 term

SUIT

Post-treatment

ECHO

*

RESU ALIC TEMP GARD PSCR

*

SORT GRAP

*

AXTE 1.0 ’Time [s]’

*

COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT p1 TERM
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM
COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WTOT

COUR 12 ’wcin’ WCIN

COUR 13 ’wint’ WINT

COUR 14 ’wext’ WEXT

COUR 15 ’bila’ BILA

*

trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER

trac 5 6 axes 1.0 ’FEXT [N]’

COLO
trac
TRAC
COLO
TRAC
TRAC

COLO

QUAL

ROUG VERT

7 8 axes 1.0 ’SX [PA]’ YZER

11 12 13 14 AXES 1.0 ’Energy [J]1’ YZER
NOIR ROUG VERT TURQ

15 AXES 1.0 ’Balance [%]’ YZER

11 12 13 14 AXES 1.0 ’Energy [J1’ YZER

XMIN 0.0 XMAX 5.E-3 NX 10

NOIR ROUG VERT TURQ

DEPL COMP 1 LECT p2 TERM REFE -9.46829E+0 TOLI
DEPL COMP 1 LECT p3 TERM REFE 9.46829E+0 TOLI
VITE COMP 1 LECT p2 TERM REFE -6.11061E+2 TOLI
VITE COMP 1 LECT p3 TERM REFE 6.11061E+2 TOLI

5.
5.
5.
5

E
E
E
E

FIN

elem lect pin midl mid2 term

*
OPTI PAS AUTO NOTE STEP IO

csta 0.5E0

log 1

liaj alph 0.10D0

LNKS STAT

*
CALCUL TINI O. TEND 100.E-3

SUIT

Post-treatment

ECHO

*

RESU ALIC TEMP GARD PSCR
*

SORT GRAP

*

AXTE 1.0 ’Time [s]’

*

pinb83.dgibi

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 037;
opti dime 2 elem qua4;

*

p1=-201 -1;

p6=102 -1;

*

t01=0.001;

*

cl=pl d 100 p2;

c2=p3 d 100 p4;

strul=c1 TRAN 1 (0 2);
stru2=c2 TRAN 1 (0 2);

stru = strul et stru2;

elim tol (stru et p5 et p6);
*

pinl = stru elem cont p2;
pin2 = stru elem cont p3;
pin = pinl et pin2;

midl = stru elem cont p5;
mid2 = stru elem cont p6;

*

xp = stru poin droi pl p4 tol;
xpln = pxordpoi xp pi;

*

p0 =0 0;

pm = manu poil pO;

*

mesh = stru et xpln et pm;

*

tass mesh;

*

opti sauv form ’pinb83.msh’;
sauv form mesh;

*

COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM
COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WTOT

COUR 12 ’wcin’ WCIN

COUR 13 ’wint’ WINT

COUR 14 ’wext’ WEXT

COUR 15 ’bila’ BILA

*

trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER

trac 5 6 axes 1.0 ’FEXT [N]’

COLO ROUG VERT

trac 7 8 axes 1.0 ’SX [PA]’ YZER

TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
COLO NOIR ROUG VERT TURQ

TRAC 15 AXES 1.0 ’Balance [%]’ YZER

TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

XMIN 0.0 XMAX 5.E-3 NX 10

COLO NOIR ROUG VERT TURQ

QUAL DEPL COMP 1 LECT p2 TERM REFE -9.49386E+0 TOLE 5.
DEPL COMP 1 LECT p3 TERM REFE 9.49386E+0 TOLE 5.
VITE COMP 1 LECT p2 TERM REFE -5.98300E+2 TOLE 5.
VITE COMP 1 LECT p3 TERM REFE 5.98300E+2 TOLE 5.

FIN

pinb93.dgibi

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 03’;
opti dime 2 elem qua4;

*

pl=-201 -1;

95

COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WTOT
COUR 12 ’wcin’ WCIN
COUR 13 ’wint’ WINT

p6=102 -1; COUR 14 ’wext’ WEXT

* COUR 15 ’bila’ BILA

t01=0.001; *

* trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER

cl=pl d 100 p2; trac 5 6 axes 1.0 ’FEXT [N]’

c2=p3 d 100 p4; COLO ROUG VERT

strul=cl TRAN 1 (0 2); trac 7 8 axes 1.0 ’SX [PA]’ YZER

stru2=c2 TRAN 1 (0 2); TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

stru = strul et stru2; COLO NOIR ROUG VERT TURQ

elim tol (stru et p5 et pé); TRAC 15 AXES 1.0 ’Balance [%]’ YZER

* TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

pinl = stru elem cont p2; XMIN 0.0 XMAX 5.E-3 NX 10
pin2 = stru elem cont p3; COLO NOIR ROUG VERT TURQ

pin = pinl et pin2; *

midl = stru elem cont p5; QUAL DEPL COMP 1 LECT p2 TERM REFE -9.47558E+0 TOLE 5.E-3
mid2 = stru elem cont p6; DEPL COMP 1 LECT p3 TERM REFE 9.47558E+0 TOLE 5.E-3
* VITE COMP 1 LECT p2 TERM REFE -5.30215E+2 TOLE 5.E-3
Xp = stru poin droi pl p4 tol; VITE COMP 1 LECT p3 TERM REFE 5.30215E+2 TOLE 5.E-3
xpln = pxordpoi xp pi;

* FIN

p0 =0 0;

pm = manu poil pO;

* pinl03.dgibi

mesh = stru et xpln et pm;

*

tass mesh;

*

opti sauv form ’pinb93.msh’;
sauv form mesh;

*

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINL - 03’;
opti dime 2 elem qua4;

*

opti trac psc; p;::foiljl’
trac mesh; P3;1 _1"
trac qual pin; p4_201 :1'
list pin; pa= :
fin: p5=-101 -1;
’ p6=102 -1;
*
. t01=0.001;
pinb93.epx .
cl=pl d 100 p2;
PINB93 c2=p3 d 100 p4;
N strul=c1 TRAN 1 (0 2);
ECHO stru2=c2 TRAN 1 (0 2);
*CONV win stru = strul et stru2;
* elim tol (stru et p5 et p6);
CAST MESH *
* pinl = stru elem cont p2;
LAGR CPLA pin2 = stru elem cont p3;
* pin = pinl et pin2;
*opti dump midl = stru elem cont p5;
* mid2 = stru elem cont p6;
GEOM Q41L stru PMAT pm TERM *
COMP EPAI 1. LECT stru TERM ¥p = stru poin droi pl p4 tol;
0.5 LECT pm TERM xpln = pxordpoi xp pi;
COUL VERT LECT stru TERM *
ROUG LECT pm TERM mesh = stru et xpln;
MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11 *
TRAC 1 2.E11 1.DO tass mesh;
LECT stru TERM *
FANT 0.1 LECT pm TERM opti sauv form ’pinl03.msh’;
* sauv form mesh;
opti pins reb2 * .
LINK COUP SPLT NONE Opti trac psc;
PINB BODY LECT pini TERM trac mesh;
BODY LECT pin2 TERM trac qual pin;
BLOQ 12 LECT pm TERM Llist pin;
* fin;
INIT VITE 1 500 LECT strul TERM
VITE 1 -500 LECT stru2 TERM .
. pinl03.epx
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
fich alic temp FREQ 1 PINLO3
poin lect pl p2 p3 p4 term *
elem lect pin midl mid2 term ECHO
* *CONV win
OPTI PAS AUTO NOTE STEP IO *
csta 0.5E0 CAST MESH
log 1 *
liaj alph 0.5D0O LAGR CPLA LAGC
LNKS STAT *
* *opti dump
CALCUL TINI O. TEND 100.E-3 *
GEOM Q41L stru TERM
SUIT COMP EPAI 1. LECT stru TERM
Post-treatment COUL VERT LECT stru TERM
ECHO MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.Ei11
* TRAC 1 2.E11 1.DO
RESU ALIC TEMP GARD PSCR LECT stru TERM
* *
SORT GRAP opti pins reb2
* LIAI PINB BODY LECT pinil TERM
AXTE 1.0 ’Time [s]’ BODY LECT pin2 TERM
* *
COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT p1 TERM INIT VITE 1 500 LECT strul TERM
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM VITE 1 -500 LECT stru2 TERM
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM *
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM fich tplo desc ’PINLO3’ freq 1
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM poin lect pl p2 p3 p4 term

o6

pinl13.epx

elem lect pin midl mid2 term
fich xplo desc ’PINLO3’ tfre 10.e-3
poin lect xpln term *
fich alic temp FREQ 1 ECHO
poin lect pl p2 p3 p4 term *CONV win
elem lect pin midl mid2 term

PINL13

*
*

CAST MESH
OPTI PAS AUTO NOTE STEP IO *
csta 0.5E0 LAGR CPLA
log 1 *
* *opti dump

CALCUL TINI O. TEND 100.E-3 *

GEOM Q41L stru TERM

SUIT COMP EPAI 1. LECT stru TERM
Eg:g‘treatment COUL VERT LECT stru TERM

MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
TRAC 1 2.E11 1.DO
LECT stru TERM

*
RESU ALIC TEMP GARD PSCR
*

SORT GRAP

*

AXTE 1.0 ’Time [s]’

*

*
opti pins reb2
LINK COUP
PINB BODY LECT pinil TERM
BODY LECT pin2 TERM

fich alic temp FREQ 1
poin lect pl p2 p3 p4 term
elem lect pin midl mid2 term

COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM .
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM INIT VITE 1 500 LECT strui TERM
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM VITE 1 -500 LECT steud TERM
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM .
COUR 5 >fex_p2’ FORC COMP 1 NOEU LECT p2 TERM ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM
7

COUR ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WTOT
COUR 12 ’wcin’ WCIN
COUR 13 ’wint’ WINT

*
OPTI PAS AUTO NOTE STEP IO

csta 0.5E0
COUR 14 ’wext’ WEXT log 1
COUR 15 ’bila’ BILA LNKS STAT

*

trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER CALCUL TINI O. TEND 100.E-3

trac 5 6 axes 1.0 ’FEXT [N]’

COLO ROUG VERT

SUIT
trac 7 8 axes 1.0 ’SX [PA]’ YZER

Post-treatment

TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER ECHO
COLO NOIR ROUG VERT TURQ *
TRAC 15 AXES 1.0 ’Balance [%]’ YZER RESU ALIC TEMP GARD PSCR

TRAC 11 12 13 14 AXES 1.0 ’Energy [J1’ YZER
XMIN 0.0 XMAX 5.E-3 NX 10

*
SORT GRAP

*

AXTE 1.0 ’Time [s]’
*
COUR

COLO NOIR ROUG VERT TURQ

QUAL DEPL COMP 1 LECT p2 TERM REFE -9.51025E+0 TOL!
DEPL COMP 1 LECT p3 TERM REFE 9.51025E+0 TOL!

E 5.E-
E 5.E- »dx_pl’ DEPL COMP 1 NOEU LECT pi TERM
VITE COMP 1 LECT p2 TERM REFE -5.13299E+2 TOLE 5.E-
E 5.E-

3
3
3
3

1
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM
VITE COMP 1 LECT p3 TERM REFE 5.13209E+2 TOL GOUR 3 *ds_p3’ DEFL COMP 1 HOED LECT o3 TERM
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT pd TERM
FIN COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM
COUR 6 *fex_p3’ FORC COMP 1 NOEU LECT p3 TERM

COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM

pin|13.dgibi COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
COUR 11 ’wtot’ WIOT
COUR 12 ‘wcin’ WCIN

opti donn ’pxordpoi.proc’; COUR 13 ’wint’ WINT

* COUR 14 ’wext’ WEXT

*opti titr ’PINB - 03’; COUR 15 ’bila’ BILA

opti dime 2 elem qua4; *

* trac 1 2 3 4 axes 1.0 ’DISPL. [M]’ YZER
p1=-201 -1; trac 5 6 axes 1.0 ’FEXT [N]’

COLO ROUG VERT

trac 7 8 axes 1.0 ’SX [PA]’ YZER

TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER
COLO NOIR ROUG VERT TURQ

p6=102 -1; TRAC 15 AXES 1.0 ’Balance [%]’ YZER

* TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

£01=0.001; XMIN 0.0 XMAX 5.E-3 NX 10
* COLO NOIR ROUG VERT TURQ

cl=p1l d 100 p2; *

c2=p3 d 100 p4; QUAL DEPL COMP 1 LECT p2 TERM REFE -9.51025E+0 TOLE 5.E-3
strul=cl TRAN 1 (0 2); DEPL COMP 1 LECT p3 TERM REFE 9.51025E+0 TOLE 5.E-3
stru2=c2 TRAN 1 (0 2); VITE COMP 1 LECT p2 TERM REFE -5.13299E+2 TOLE 5.E-3
stru = strul et stru2; VITE COMP 1 LECT p3 TERM REFE 5.13299E+2 TOLE 5.E-3
elim tol (stru et p5 et p6);

* FIN

pinl = stru elem cont p2;
pin2 = stru elem cont p3;

pin = pinl et pin2; pinl23.dgibi

midl = stru elem cont p5;
mid2 = stru elem cont p6;
* opti donn ’pxordpoi.proc’;
*

*opti titr ’PINL - 03’;
opti dime 2 elem qua4;

Xp = stru poin droi pl p4 tol;
xpln = pxordpoi xp pi;
*

mesh = stru et xpln;

*

tass mesh;

*

opti sauv form ’pinli3.msh’;
sauv form mesh;

* p6=102 -1;

opti trac psc; *

trac mesh; t01=0.001;

trac qual pin; *

list pin; cl=p1l d 100 p2;
fin; c2=p3 d 100 p4;

strul=cl TRAN 1 (0 2);
stru2=c2 TRAN 1 (0 2);

Y

COLO ROUG VERT

stru = strul et stru2; trac 7 8 axes 1.0 ’SX [PA]’ YZER

elim tol (stru et p5 et pé); TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

* COLO NOIR ROUG VERT TURQ

pinl = stru elem cont p2; TRAC 15 AXES 1.0 ’Balance [%]’ YZER

pin2 = stru elem cont p3; TRAC 11 12 13 14 AXES 1.0 ’Energy [J]’ YZER

pin = pinl et pin2; XMIN 0.0 XMAX 5.E-3 NX 10
midl = stru elem cont p5; COLO NOIR ROUG VERT TURQ

mid2 = stru elem cont p6; *

* QUAL DEPL COMP 1 LECT p2 TERM REFE -9.51025E+0 TOLE 5.E-3
xp = stru poin droi pl p4 tol; DEPL COMP 1 LECT p3 TERM REFE 9.51025E+0 TOLE 5.E-3
xpln = pxordpoi xp pi; VITE COMP 1 LECT p2 TERM REFE -5.13299E+2 TOLE 5.E-3
* VITE COMP 1 LECT p3 TERM REFE 5.13299E+2 TOLE 5.E-3
p0 =0 03

pm = manu poil pO; FIN

*

mesh = stru et xpln et pm;) .

* pinl33.dgibi

tass mesh;

*
opti sauv form ’pinl23.msh’;
sauv form mesh;

*

opti trac psc;

opti donn ’pxordpoi.proc’;
*

*opti titr ’PINB - 03’;
opti dime 2 elem qua4;
*

trac mesh;) p1=-201 -1;
trac qual pin;
list pin;
fin;
. p6=102 -1;
pinl23.epx .
t01=0.001;
PINL23 *
* cl=p1 d 100 p2;
ECHO c2=p3 d 100 p4;
*CONV win strul=c1 TRAN 1 (0 2);
* stru2=c2 TRAN 1 (0 2);
CAST MESH stru = strul et stru2;
* elim tol (stru et p5 et p6);
LAGR CPLA LAGC *
* pinl = stru elem cont p2;
*opti dump pin2 = stru elem cont p3;
* pin = pinl et pin2;
GEOM Q41L stru PMAT pm TERM midl = stru elem cont p5;
COMP EPAI 1. LECT stru TERM mid2 = stru elem cont p6;
0.5 LECT pm TERM *
COUL VERT LECT stru TERM xp = stru poin droi pl p4 tol;
ROUG LECT pm TERM xpln = pxordpoi xp pl
MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11 *
TRAC 1 2.E11 1.DO PO =0 0;
LECT stru TERM pm = manu poil pO;
FANT 0.1 LECT pm TERM *
* mesh = stru et xpln et pm;
opti pins reb2 *
LIAI PINB BODY LECT pinl TERM tass mesh;
BODY LECT pin2 TERM *
BLOQ 12 LECT pm TERM opti sauv form ’pinl33.msh’;
* sauv form mesh;
INIT VITE 1 500 LECT strul TERM *
VITE 1 -500 LECT stru2 TERM opti trac psc;
* trac mesh;
ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3 trac qual pin;
fich tplo desc ’PINL23’ freq 1 I}St pin;
poin lect pl p2 p3 p4 term fin;
elem lect pin midl mid2 term
fich xplo desc ’PINL23’ tfre 10.e-3 .
poin lect xpln term p|n|33-epx
fich alic temp FREQ 1
poin lect pl p2 p3 p4 term PINL33
elem lect pin midl mid2 term *
* ECHO
OPTI PAS AUTO NOTE STEP IO *CONV win
csta 0.5E0 *
log 1 CAST MESH
* *
CALCUL TINI O. TEND 100.E-3 LAGR CPLA
*
SUIT *opti dump
Post-treatment *
ECHO GEOM Q41L stru PMAT pm TERM
* COMP EPAT 1. LECT stru TERM
RESU ALIC TEMP GARD PSCR 0.5 LECT pm TERM
* COUL VERT LECT stru TERM
SORT GRAP ROUG LECT pm TERM
* MATE VM23 RO 8000. YOUN 2.E11 NU 0.0 ELAS 2.E11
AXTE 1.0 ’Time [s]’ TRAC 1 2.E11 1.DO
* LECT stru TERM
COUR 1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM FANT 0.1 LECT pm TERM
COUR 2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM *
COUR 3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM opti pins reb2
COUR 4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM LINK COUP SPLT NONE
COUR 5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM PINB BODY LECT pinl TERM
COUR 6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM BODY LECT pin2 TERM
COUR 7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM BLOQ 12 LECT pm TERM
COUR 8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM *
COUR 11 ’wtot’ WTOT INIT VITE 1 500 LECT strul TERM
COUR 12 ’wcin’ WCIN VITE 1 -500 LECT stru2 TERM
COUR 13 ’wint’ WINT *
COUR 14 ’wext’ WEXT ECRI DEPL VITE ACCE FINT FEXT CONT ECRO TFRE 10.E-3
COUR 15 ’bila’ BILA fich alic temp FREQ 1
* poin lect pl p2 p3 p4 term
trac 1 2 3 4 axes 1.0 *DISPL. [M]’ YZER elem lect pin midl mid2 term
trac 5 6 axes 1.0 ’FEXT [N]’ *

o8

OPTI

PAS AUTO NOTE STEP IO

csta 0.5E0

log

1

LNKS STAT

*

CALCUL TINI O. TEND 100.E-3

SUIT

Post-

ECHO
*

RESU
*

SORT
*

AXTE
*

COUR
COUR
COUR
COUR
COUR
COUR
COUR

treatment

ALIC TEMP GARD PSCR
GRAP

1.0 ’Time [s]’

1 ’dx_pl’ DEPL COMP 1 NOEU LECT pl TERM

2 ’dx_p2’ DEPL COMP 1 NOEU LECT p2 TERM

3 ’dx_p3’ DEPL COMP 1 NOEU LECT p3 TERM

4 ’dx_p4’ DEPL COMP 1 NOEU LECT p4 TERM

5 ’fex_p2’ FORC COMP 1 NOEU LECT p2 TERM

6 ’fex_p3’ FORC COMP 1 NOEU LECT p3 TERM

7 ’sx_mid1’ CONT COMP 1 ELEM LECT midl TERM
8 ’sx_mid2’ CONT COMP 1 ELEM LECT mid2 TERM
11 ’wtot’ WTOT

12 ’wcin’ WCIN
13 ’wint’ WINT
14 ’wext’ WEXT
15 ’bila’ BILA

1234 axes 1.0 *DISPL. [M]’ YZER
5 6 axes 1.0 ’FEXT [N]’
ROUG VERT
7 8 axes 1.0 ’SX [PA]’ YZER
11 12 13 14 AXES 1.0 ’Energy [J1’° YZER
NOIR ROUG VERT TURQ
15 AXES 1.0 ’Balance [%]’ YZER
11 12 13 14 AXES 1.0 ’Energy [J1’ YZER
XMIN 0.0 XMAX 5.E-3 NX 10
NOIR ROUG VERT TURQ

29

QUAL DEPL COMP 1 LECT p2 TERM REFE -9.51025E+0 TOL!
DEPL COMP 1 LECT p3 TERM REFE 9.51025E+0 TOL!
VITE COMP 1 LECT p2 TERM REFE -5.13299E+2 TOL!
VITE COMP 1 LECT p3 TERM REFE 5.13299E+2 TOL!

mmEEm
o oo o

E
.E-
E
E

FIN

pxordpoi.proc

*$$$$ PXORDPOI
pour ordonner une serie de points PLIN en partant de P1

Input:
PLIN = objet MAILLAGE de type POI1 (ligne de points)
P1 = premier point de la ligne (typ POINT)

Output:

les points ordonnes a partir de P1

COK K K K K K X K K K X X X

DEBPROC’ PXORDPOI PLIN#’MAILLAGE’ P1x’POINT’ ;

PORDO = objet MAILLAGE de type POI1 (ligne de points) contenant

*
PORDO=P1;
PPA=P1;
NE=’NBEL’ PLIN;
*
I=0;
’REPETER’ LAB1 (NE-1);
I=I + 1;
* mess I;
PLIN= ’DIFF’ ((PPA ’ET’ PPA) ’ELEM’ 1) PLIN;
PPA=PLIN ’POIN’ ’PROC’ PPA;
PORDO=PORDO ’ET’ PPA;
’FIN’ LAB1;
*
’FINPROC’ PORDO;

List of input files

C

cbeall.epX «ovvvii 48
cbealla.epxX ...oovvi 48
cbeallz.epX ...vvvei i 48
€beal2.ePX « oo 48
cbeal2a.ePX ..o vt 49
Cbeal2C.ePX .« .t et 49
cbeal2z.ePX .. 49
P

pinb03.dgibi..... ... i 50
PIND03.€PX .« v et 50
pinb13.dgibi........ooo 50
PINb13.ePX. .ot 50
pinb23.dgibi..... ... o oo 51
PIND23.6PX. vt 51
pinb33.dgibi..... ... o 52
PIND33.€PX. .t 52
pinb43.dgibi..... ... oo 52
PINDA3.EPX. oot 52
pinb53.dgibi..... ... oo 53
PINDS3.EPX. v 53
pinb63.dgibi..... 53
PINDO3.EPX. oot 54
pinb73.dgibi..... ... oo 54
PIND73.€PX. oo 54
pinb83.dgibi..... 55
PINDb83.ePX. .o 55
pinb93.dgibi...... ... 55
PINb93.€PX. .ttt 56
pinl03.dgibi....... ..o 56
Pinl03.epX . oo 56
pinll13.dgibi....... ..o 57
PInll3.epX .o Y
pinl23.dgibi....... ... oo 57
PINI23.epX . oo 58
pinl33.dgibi....... ... 58
PInl33.epx . oo 58
PXOTAPOL.PrOC . vt vt 59

60

GETTING IN TOUCH WITH THE EU
In person

All over the European Union there are hundreds of Europe Direct centres. You can find the address of the centre nearest you online

(european-union.europa.eu/contact-eu/meet-us_en).

On the phone or in writing

Europe Direct is a service that answers your questions about the European Union. You can contact this service:
— by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),

— at the following standard number: +32 22999696,

— via the following form: european-union.europa.eu/contact-eu/write-us en.

FINDING INFORMATION ABOUT THE EU
Online

Information about the European Union in all the official languages of the EU is available on the Europa website (european-
union.europa.eu).

EU publications

You can view or order EU publications at op.europa.eu/en/publications. Multiple copies of free publications can be obtained by
contacting Europe Direct or your local documentation centre (european-union.europa.eu/contact-eu/meet-us en).

EU law and related documents

For access to legal information from the EU, including all EU law since 1951 in all the official language versions, go to EUR-Lex
(eur-lex.europa.eu).

Open data from the EU

The portal data.europa.eu provides access to open datasets from the EU institutions, bodies and agencies. These can be
downloaded and reused for free, for both commercial and non-commercial purposes. The portal also provides access to a wealth
of datasets from European countries.

Science for policy

Publications Office
of the European Union

The Joint Research Centre (JRC) provides
independent, evidence-based knowledge
and science, supporting EU policies to
positively impact society

EU Science Hub
joint-research-centre.ec.europa.eu

@ ®EU_ScienceHub
@ EU Science Hub - Joint Research Centre
@ EU Science, Research and Innovation

@ EU Science Hub

@eu_science

